期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Quadrilateral 2D linked-interpolation finite elements for micropolar continuum
1
作者 Sara Grbcic Gordan Jelenic Dragan Ribarc? 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期1001-1020,共20页
Quadrilateral finite elements for linear micropolar continuum theory are developed using linked interpolation.In order to satisfy convergence criteria,the newly presented finite elements are modified using the Petrov-... Quadrilateral finite elements for linear micropolar continuum theory are developed using linked interpolation.In order to satisfy convergence criteria,the newly presented finite elements are modified using the Petrov-Galerkin method in which different interpolation is used for the test and trial functions.The elements are tested through four numerical examples consisting of a set of patch tests,a cantilever beam in pure bending and a stress concentration problem and compared with the analytical solution and quadrilateral micropolar finite elements with standard Lagrangian interpolation.In the higher-order patch test,the performance of the first-order element is significantly improved.However,since the problems analysed are already describable with quadratic polynomials,the enhancement due to linked interpolation for higher-order elements could not be highlighted.All the presented elements also faithfully reproduce the micropolar effects in the stress concentration analysis,but the enhancement here is negligible with respect to standard Lagrangian elements,since the higher-order polynomials in this example are not needed. 展开更多
关键词 MICROPOLAR theory finite element method Linked INTERPOLATION quadrilateral elementS
下载PDF
On the Error Estimate of h-Convergence in Quadrilateral Elements
2
作者 段梅 宫本裕 +1 位作者 周本宽 陈大鹏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第12期1123-1131,共9页
To provide a iheoreiical basis for h-type .finire elemenl analysis with quadrilateralelements, in the present paper, the h-convergence of quadrilateral elements is established. whose related lemmas and theorems being ... To provide a iheoreiical basis for h-type .finire elemenl analysis with quadrilateralelements, in the present paper, the h-convergence of quadrilateral elements is established. whose related lemmas and theorems being presented, and therefore, theerror estimate problems are investigated. 展开更多
关键词 finite element quadrilateral element H-CONVERGENCE errorestimate
下载PDF
A class of nonconforming quadrilateral finite elements for incompressible flow 被引量:1
3
作者 HUANG ZhongYi LI Ye 《Science China Mathematics》 SCIE 2013年第2期379-393,共15页
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the ba... This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates. 展开更多
关键词 incompressible flow finite element method nonconforming quadrilateral elements optimal error estimates
原文传递
C^1 conforming quadrilateral finite elements with complete secondorder derivatives on vertices and its application to Kirchhoff plates
4
作者 WU Yang XING YuFeng LIU Bo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第6期1066-1084,共19页
The classical problem of the construction of C^1 conforming single-patch quadrilateral finite elements has been solved in this investigation by using the blending function interpolation method.In order to achieve the ... The classical problem of the construction of C^1 conforming single-patch quadrilateral finite elements has been solved in this investigation by using the blending function interpolation method.In order to achieve the C^1 conformity on the interfaces of quadrilateral elements,complete second-order derivatives are used at the element vertices,and the information of geometrical mapping is also considered into the construction of shape functions.It is found that the shape functions and the polynomial spaces of the present elements vary with element shapes.However,the developed quadrilateral elements are at least third order for general quadrilateral shapes and fifth order for rectangular shapes.Therefore,very fast convergence can be achieved.A promising feature of the present elements is that they can be used in cooperation with those high-precision rectangular and triangular elements.Since the present elements are over conforming on element vertices,an approach for handling problems of material discontinuity is also proposed.Numerical examples of Kirchhoff plates are employed to demonstrate the computational performance of the present elements. 展开更多
关键词 finite element method quadrilateral elements C^1 conforming Kirchhoff plates
原文传递
Some Numerical Quadrature Schemes of a Non-conforming Quadrilateral Finite Element
5
作者 Xiao-fei GUAN Ming-xia LI Shao-chun CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第1期117-126,共10页
Numerical quadrature schemes of a non-conforming finite element method for general second order elliptic problems in two dimensional (2-D) and three dimensional (3-D) space are discussed in this paper. We present ... Numerical quadrature schemes of a non-conforming finite element method for general second order elliptic problems in two dimensional (2-D) and three dimensional (3-D) space are discussed in this paper. We present and analyze some optimal numerical quadrature schemes. One of the schemes contains only three sampling points, which greatly improves the efficiency of numerical computations. The optimal error estimates are derived by using some traditional approaches and techniques. Lastly, some numerical results are provided to verify our theoretical analysis. 展开更多
关键词 numerical integration non-conforming quadrilateral finite element optimal error estimate
原文传递
FINITE ELEMENT ERROR EXPANSION FOR NONUNIFORM QUADRILATERAL MESHES
6
作者 林群 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1989年第3期275-282,共8页
An error expansion for isoparametric bilinear finite element approximation isestablished with some kind of nonuniform quadrilateral mesh constructed in the followingway:We first decompose the considered polygonal doma... An error expansion for isoparametric bilinear finite element approximation isestablished with some kind of nonuniform quadrilateral mesh constructed in the followingway:We first decompose the considered polygonal domain into several fixed convex macro-quadrilaterals and then link up some equi-proportionate points of the opposite edges in eachmacro-quadrilateral and form a quadrilateral mesh which may not be uniform and so isuseful in the adaptive refinement. 展开更多
关键词 finite elements NONUNIFORM quadrilateral mesh ERROR expansion a POSTERIOR ERROR estimate RICHARDSON EXTRAPOLATION
原文传递
Application of the quadrilateral area coordinate method:a new element for laminated composite plate bending problems 被引量:6
7
作者 Song Cen Xiangrong Fu +2 位作者 Yuqiu Long Hongguang Li Zhenhan Yao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第5期561-575,共15页
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model... Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models. 展开更多
关键词 quadrilateral Area Coordinate (QAC) finite element Laminated composite plate First-order shear deformation theory (FSDT) Hybrid post-processing procedure
下载PDF
On the Full C_(1)-Q_(k) Finite Element Spaces on Rectangles and Cuboids 被引量:2
8
作者 Shangyou Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2010年第6期701-721,共21页
We study the extensions of the Bogner-Fox-Schmit element to the whole family of Q_(k) continuously differentiable finite elements on rectangular grids,for all k≥3,in 2D and 3D.We show that the newly defined C_(1) spa... We study the extensions of the Bogner-Fox-Schmit element to the whole family of Q_(k) continuously differentiable finite elements on rectangular grids,for all k≥3,in 2D and 3D.We show that the newly defined C_(1) spaces are maximal in the sense that they contain all C_(1)-Q_(k) functions of piecewise polynomials.We give examples of other extensions of C_(1)-Q_(k) elements.The result is consistent with the Strang’s conjecture(restricted to the quadrilateral grids in 2D and 3D).Some numerical results are provided on the family of C_(1) elements solving the biharmonic equation. 展开更多
关键词 Differentiable finite element biharmonic equation Bogner-Fox-Schmit rectangle quadrilateral element hexahedral element Strang’s conjecture
原文传递
Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates 被引量:1
9
作者 GUO YuanHui YU GuoZhu XIE XiaoPing 《Science China Mathematics》 SCIE 2013年第8期1727-1742,共16页
This paper presents a low order stabilized hybrid quadrilateral finite element method for ReissnerMindlin plates based on Hellinger-Reissner variational principle,which includes variables of displacements,shear stress... This paper presents a low order stabilized hybrid quadrilateral finite element method for ReissnerMindlin plates based on Hellinger-Reissner variational principle,which includes variables of displacements,shear stresses and bending moments.The approach uses continuous piecewise isoparametric bilinear interpolations for the approximations of the transverse displacement and rotation.The stabilization achieved by adding a stabilization term of least-squares to the original hybrid scheme,allows independent approximations of the stresses and moments.The stress approximation adopts a piecewise independent 4-parameter mode satisfying an accuracy-enhanced condition.The approximation of moments employs a piecewise-independent 5-parameter mode.This method can be viewed as a stabilized version of the hybrid finite element scheme proposed in [Carstensen C,Xie X,Yu G,et al.A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates.Comput Methods Appl Mech Engrg,2011,200:1161-1175],where the approximations of stresses and moments are required to satisfy an equilibrium criterion.A priori error analysis shows that the method is uniform with respect to the plate thickness t.Numerical experiments confirm the theoretical results. 展开更多
关键词 Reissner-Mindlin plate stabilized method hybrid finite element quadrilateral element
原文传递
Development of quadrilateral spline thin plate elements using the B-net method 被引量:2
10
作者 Juan Chen Chong-Jun Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期567-574,共8页
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh disto... The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes. 展开更多
关键词 Spline finite element ~ Refined quadrilateral el-ement ~ Discrete Kirchhoff plate element ~ Triangular areacoordinates ~ B-net method
下载PDF
A cubic quadrilateral spline element with concave shapes
11
作者 Juan Chen Chongjun Li 《Theoretical & Applied Mechanics Letters》 CAS 2013年第3期19-22,共4页
Basic requirement for applying isoparametric element is that the element has to be convex and no violent distortion is allowed. In this paper, a cubic quadrilateral spline element with 12 nodes has been developed usin... Basic requirement for applying isoparametric element is that the element has to be convex and no violent distortion is allowed. In this paper, a cubic quadrilateral spline element with 12 nodes has been developed using the triangular area coordinates and the B-net method, which can exactly model the cubic field for quadrilateral element with both convex and concave shapes. Neither mapping nor coordinate transformation is required and the spline element can obtain high accuracy solutions and insensitive to mesh distortions. 展开更多
关键词 spline finite element B-net method quadrilateral element concave quadrangle
下载PDF
Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids
12
作者 Yunqing Huang Shangyou Zhang 《Communications in Mathematics and Statistics》 SCIE 2013年第2期143-162,共20页
By the standard theory,the stable Qk+1,k−Qk,k+1/Qdck divergence-free element converges with the optimal order of approximation for the Stokes equations,but only order k for the velocity in H1-norm and the pressure in... By the standard theory,the stable Qk+1,k−Qk,k+1/Qdck divergence-free element converges with the optimal order of approximation for the Stokes equations,but only order k for the velocity in H1-norm and the pressure in L2-norm.This is due to one polynomial degree less in y direction for the first component of velocity,which is a Qk+1,k polynomial of x and y.In this manuscript,we will show by supercloseness of the divergence free element that the order of convergence is truly k+1,for both velocity and pressure.For special solutions(if the interpolation is also divergence-free),a two-order supercloseness is shown to exist.Numerical tests are provided confirming the accuracy of the theory. 展开更多
关键词 Mixed finite element Stokes equations Divergence-free element quadrilateral element Rectangular grids SUPERCLOSENESS SUPERCONVERGENCE
原文传递
FINITE ELEMENT ERROR EXPANSIONS FOR THE EIGENVALUE APPROXIMATION TO THE MULTIGROUP DIFFUSION EQUATIONS
13
作者 丁彦恒 林群 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1991年第3期225-235,共11页
Asymptotic expansions for the finite element approximation to the eigenvalues of the mult-igroup diffusion equations on Ω(?)R^n(n=2,3)of reactor theory are given,firstly for a piecewiseuniform triangulation,then for ... Asymptotic expansions for the finite element approximation to the eigenvalues of the mult-igroup diffusion equations on Ω(?)R^n(n=2,3)of reactor theory are given,firstly for a piecewiseuniform triangulation,then for nonuniform quadrilateral meshes,and finally for nonuniformhexahedral meshes.The effect of certain classes of numerical integrations is studied.As applicationsof the expansions,several extrapolation formulas and a posteriori error estimates are obtained. 展开更多
关键词 multigroup diffusion equations finite element quadrature ERROR expansion quadrilateral HEXAHEDRON EXTRAPOLATION a POSTERIORI ERROR estimate
原文传递
Vibration analysis of two-dimensional structures using micropolar elements
14
作者 M.KOHANSAL-VAJARGAH R.ANSARI +1 位作者 M.FARAJI-OSKOUIE M.BAZDID-VAHDATI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期999-1012,共14页
Based on the micropolar theory(MPT),a two-dimensional(2 D)element is proposed to describe the free vibration response of structures.In the context of the MPT,a 2 D formulation is developed within the ABAQUS finite ele... Based on the micropolar theory(MPT),a two-dimensional(2 D)element is proposed to describe the free vibration response of structures.In the context of the MPT,a 2 D formulation is developed within the ABAQUS finite element software.The user-defined element(UEL)subroutine is used to implement a micropolar element.The micropolar effects on the vibration behavior of 2 D structures with arbitrary shapes are studied.The effect of micro-inertia becomes dominant,and by considering the micropolar effects,the frequencies decrease.Also,there is a considerable discrepancy between the predicted micropolar and classical frequencies at small scales,and this difference decreases when the side length-to-length scale ratio becomes large. 展开更多
关键词 finite element method(FEM) quadrilateral element micropolar theory(MPT) user-defined element(UEL)subroutine free vibration
下载PDF
岩土体大变形分析的Cosserat-粒子有限元法 被引量:2
15
作者 唐洪祥 崔家铭 +2 位作者 张雪 张磊 刘乐天 《岩土工程学报》 EI CAS CSCD 北大核心 2023年第3期495-502,共8页
粒子有限元法(PFEM)既继承了有限元法坚实的数学基础,又具有模拟大变形、复杂边界问题的能力,在流固耦合、岩土工程领域有广泛的应用。但另一方面,岩土体在大变形过程中往往具有应变软化特性和应变局部化现象,为保持问题求解的适定性,... 粒子有限元法(PFEM)既继承了有限元法坚实的数学基础,又具有模拟大变形、复杂边界问题的能力,在流固耦合、岩土工程领域有广泛的应用。但另一方面,岩土体在大变形过程中往往具有应变软化特性和应变局部化现象,为保持问题求解的适定性,需要在本构方程中引入正则化机制,采用Cosserat连续体理论是引入正则化机制有效方法之一。将PFEM计算方法与Cosserat连续体理论结合,发展了Cosserat-PFEM方法。与传统PFEM中使用三角形单元不同,提出的新方法将边界识别、网格划分相互独立进行,使得四边形等单元的使用成为可能,以提高数值求解的精度与克服三角形单元对应变局部化问题模拟的倾向性。算例表明,本文发展的Cosserat-PFEM方法及基于ABAQUS软件开发的程序是可靠和有效的,拓展了PFEM的应用范围,具有模拟大变形问题并保持问题适定性的能力,适用于大变形渐进破坏问题的模拟。 展开更多
关键词 粒子有限元 Cosserat连续体 边界识别 大变形 四边形单元
下载PDF
基于三角形网格的无量纲最小二乘有限元法及其应用 被引量:1
16
作者 李浩 宋艳争 +3 位作者 刘刚 吕金潮 靳立鹏 武卫革 《科学技术与工程》 北大核心 2023年第21期9056-9063,共8页
利用最小二乘有限元法计算二维流体场需要采用四边形网格,而仅采用四边形单元剖分含有角环、圆角和尖角等复杂结构的电力装备二维仿真模型时往往出现网格畸变。为此,提出了一种基于三角形网格实现最小二乘有限元的方法,即在三角形剖分... 利用最小二乘有限元法计算二维流体场需要采用四边形网格,而仅采用四边形单元剖分含有角环、圆角和尖角等复杂结构的电力装备二维仿真模型时往往出现网格畸变。为此,提出了一种基于三角形网格实现最小二乘有限元的方法,即在三角形剖分网格上再处理得到四边形网格,从而实现最小二乘有限元法计算流体场。为验证所提方法的有效性,分别对方腔模型和带有角环等复杂结构的变压器单分区模型进行了数值计算,并分别与规则四边形网格下的最小二乘有限元法和Fluent计算结果进行对比。对比结果表明所提出的网格处理方法可以实现含有复杂结构电力装备的二维流体场仿真。 展开更多
关键词 最小二乘有限元法 三角形网格 四边形网格 流场计算
下载PDF
基于面积坐标的四边形杂交有限元法
17
作者 高何金雨 张世全 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期8-16,共9页
本文针对二维线弹性问题提出了一种基于面积坐标的新型杂交应力四边形有限元法AGQ-LQ 6.该方法基于广义Hellinger-Reissner变分原理,位移逼近采用含内部位移的四节点广义协调元,应力逼近则采用九参数线性应力模式.数值算例表明,本文构... 本文针对二维线弹性问题提出了一种基于面积坐标的新型杂交应力四边形有限元法AGQ-LQ 6.该方法基于广义Hellinger-Reissner变分原理,位移逼近采用含内部位移的四节点广义协调元,应力逼近则采用九参数线性应力模式.数值算例表明,本文构造的有限元既能保持面积坐标广义协调元对网格畸变不敏感及粗网格精度较高的优点,又能有效克服泊松闭锁现象. 展开更多
关键词 线弹性问题 四边形面积坐标方法 杂交应力有限元 泊松闭锁现象
下载PDF
国外某隧洞TBM管片结构分析
18
作者 许艇 赵梦岩 《水科学与工程技术》 2023年第1期34-35,共2页
近年来,TBM广泛应用于水工隧洞工程,有着对围岩扰动小、施工速度快等特点。国外某输水工程采用双护盾TBM进行施工,隧洞衬后内径4.3m,每环采用四片四边形管片,管片厚度0.25m,开挖直径5.06 m。通过采用有限元方法对各种工况下管片进行分析... 近年来,TBM广泛应用于水工隧洞工程,有着对围岩扰动小、施工速度快等特点。国外某输水工程采用双护盾TBM进行施工,隧洞衬后内径4.3m,每环采用四片四边形管片,管片厚度0.25m,开挖直径5.06 m。通过采用有限元方法对各种工况下管片进行分析,最终确定了合适的管片结构型式。 展开更多
关键词 TBM 双护盾 四边形管片 有限元
下载PDF
四边形单元面积坐标理论 被引量:29
19
作者 龙驭球 李聚轩 +1 位作者 龙志飞 岑松 《工程力学》 EI CSCD 北大核心 1997年第3期1-11,共11页
本文建立了四边形单元面积坐标的系统理论,包括:(1)给出四边形单元两个特征参数g1,g2的定义以及四边形退化为平行四边形(含矩形),梯形,三角形时相应的特征条件;(2)给出四边形单元面积坐标的定义及其与直角坐标和四边... 本文建立了四边形单元面积坐标的系统理论,包括:(1)给出四边形单元两个特征参数g1,g2的定义以及四边形退化为平行四边形(含矩形),梯形,三角形时相应的特征条件;(2)给出四边形单元面积坐标的定义及其与直角坐标和四边形等参坐标之间的变换关系;(3)给出四边形单元四个面积坐标分量之间应满足的两个恒等式并予以证明;(4)给出相关的一些重要公式。可以看出,四边形面积坐标是构造四边形单元的有效工具。它既是自然坐标,具有不变性;同时它与直角坐标之间为线性关系,易于得出单元刚度矩阵的积分显式,无需依赖于数值积分。 展开更多
关键词 有限元 四边形元 面积坐标
下载PDF
四边形单元面积坐标的微分和积分公式 被引量:16
20
作者 龙志飞 李聚轩 +1 位作者 岑松 龙驭球 《工程力学》 EI CSCD 北大核心 1997年第3期12-20,共9页
构造四边形单元时,应用面积坐标方法有其优点。文献[1]系统地论述了四边形单元面积坐标理论,本文是文献[1]的续篇,补充论述采用四边形单元面积坐标时的微分和积分公式。采用三角形单元面积坐标时的微分和积分公式是其特殊情况... 构造四边形单元时,应用面积坐标方法有其优点。文献[1]系统地论述了四边形单元面积坐标理论,本文是文献[1]的续篇,补充论述采用四边形单元面积坐标时的微分和积分公式。采用三角形单元面积坐标时的微分和积分公式是其特殊情况。应用面积坐标方法时,易于得出四边形单元刚度矩阵的积分显式,无需依赖于数值积分,这个优点是采用四边形等参坐标时所不具备的。 展开更多
关键词 有限元 四边形元 面积坐标 积分公式 微分公式
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部