期刊文献+
共找到126,039篇文章
< 1 2 250 >
每页显示 20 50 100
Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load OA
1
作者 Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期83-104,共22页
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who... At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load. 展开更多
关键词 finite element modeling Hygro-thermal environment Variable thickness Free and forced vibration Visco-elastic foundation Skew-plate
下载PDF
FINITE ELEMENT MODELING OF MODERATELY THICK COMPOSITE PLATE WITH PIEZOELECTRIC SENSORS AND ACTUATORS 被引量:2
2
作者 周勇 王鑫伟 谈梅兰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期205-210,共6页
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen... A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading. 展开更多
关键词 finite element COMPOSITE moderately thick plate PIEZOELECTRIC ACTUATOR SENSOR
下载PDF
Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method 被引量:3
3
作者 Trung Thanh Tran Quoc-Hoa Pham Trung Nguyen-Thoi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期971-986,共16页
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES... The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail. 展开更多
关键词 Functionally graded porous(FGP)plates Edge-based smoothed finite element method(ES-FEM) Mixed interpolation of tensorial components(MITC) Static bending Free vibration
下载PDF
Capacitance Evaluation on Non-parallel Thick-Plate Capacitors by Means of Finite Element Analysis 被引量:1
4
作者 J.M. Bueno-Barrachina C.S. Cafias-Pefiuelas S. Catalan-Izquierdo 《Journal of Energy and Power Engineering》 2011年第4期373-378,共6页
In this work we show the influence of the edge-effect on the electric field distribution and, hence, on the inner and outer capacitance in an inclined-plate capacitor system surrounded by an insulating medium taking i... In this work we show the influence of the edge-effect on the electric field distribution and, hence, on the inner and outer capacitance in an inclined-plate capacitor system surrounded by an insulating medium taking into account the thickness of the conducting plates for a complete set of dimensions and insulating characteristics. Where available, we compare our results with previously published works. Finally, using statistical tools, we obtain approximate expression for computing the relationship between capacitance and insulation material characteristics, insulation gap, plate dimensions and angle. 展开更多
关键词 CAPACITANCE edge-effect electric field finite elements method modeling.
下载PDF
Finite element analysis of the free-damped beam-stiffened plate
5
作者 杨莉 孙庆鸿 +1 位作者 朱壮瑞 许志华 《Journal of Southeast University(English Edition)》 EI CAS 2004年第3期328-331,共4页
A finite element model is presented for free-damped beam-stiffened plates. The nodes of the plate elements are treated as master-nodes, and the corresponding nodes of the beam elements are considered as slave-nodes. T... A finite element model is presented for free-damped beam-stiffened plates. The nodes of the plate elements are treated as master-nodes, and the corresponding nodes of the beam elements are considered as slave-nodes. The stiffness and mass matrices of the elements are developed. Based on the analysis of the dynamic properties of the structures, modal loss factors are predicted by the modal strain energy method. Finally, an example is given to compare the results obtained from the proposed method with the results of the ANSYS software. The results show that the method in this paper is computationally efficient, simple and feasible with high precision and engineering practicability. 展开更多
关键词 beam-stiffened plate DAMPING finite element
下载PDF
Finite Element Analysis for Magneto-Convection Heat Transfer Performance in Vertical Wavy Surface Enclosure:Fin Size Impact 被引量:3
6
作者 Md.Fayz-Al-Asad F.Mebarek-Oudina +3 位作者 H.Vaidya Md.Shamim Hasan Md.Manirul Alam Sarker A.I.Ismail 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期817-837,共21页
The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottomwall.We use a finite elementmetho... The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottomwall.We use a finite elementmethod based on Galerkin weighted residual(GWR)techniques to set up the appropriate governing equations for the present flow model.We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity.We graphically represent the numerical results,such as isotherms,streamlines,velocity profiles,local and mean Nusselt numbers,and average surface temperature.Comparisons between the results of this work and previously published work in a literature review have been produced to examine the reliability and consistency of the data.The different sizes of the fin surface significantly impact flow creation and temperature fields.Additionally,the long fin size is necessary to enhance the heat transfer rate on the right surface at large Richardson numbers and low Hartmann numbers.Fin surfaces can significantly increase the mixing of fluid inside the enclosure,which can mean reductions in reaction times and operating costs,along with increases in heat transfer and efficiency. 展开更多
关键词 Fin surface finite element method combined convection MHD wavy enclosure
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
7
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
A BICUBIC B-SPLINE FINITE ELEMENT METHOD FOR FOURTH-ORDER SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
8
作者 Fangfang DU Tongjun SUN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2411-2421,共11页
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines... A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 bicubic B-spline finite element method optimal control problem Bogner-Fox-Schmit element Crank-Nicolson scheme numerical experiment
下载PDF
Reliability Prediction of Wrought Carbon Steel Castings under Fatigue Loading Using Coupled Mold Optimization and Finite Element Simulation
9
作者 Muhammad Azhar Ali Khan Syed Sohail Akhtar +2 位作者 Abba AAbubakar Muhammad Asad Khaled S.Al-Athel 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2325-2350,共26页
The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mol... The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mold is carried out using MAGMASoft mainly based on porosity reduction as a response.After validating the initial mold design with experimental data,a spring flap,a common component of an automotive suspension system is designed and optimized followed by fatigue life prediction based on simulation using Fe-safe.By taking into consideration the variation in both stress and strength,the stress-strength model is used to predict the reliability of the component under fatigue loading.Under typical loading conditions of 70 kN,the analysis showed that 95%of the steel spring flaps achieve infinite life.However,under maximum loading conditions of 90 kN,reliability declined significantly,with only 65%of the spring flaps expected to withstand the stress without failure.The study also identified a safe load-induced stress of 95 MPa on the spring flap.The findings suggest that transitioning from forged to cast spring flaps is a promising option,particularly if further improvements in casting design reduce porosity to negligible levels,potentially achieving 100%reliability under typical loading conditions.This integrated approach of mold optimization coupled with reliability estimation under realistic service loading conditions offers significant potential for the casting industry to produce robust,cost-effective products. 展开更多
关键词 CASTING OPTIMIZATION simulation finite element reliability automotive suspension
下载PDF
Crystal plasticity finite element simulations on extruded Mg-10Gd rod with texture gradient
10
作者 Jaeseong Lee Dirk Steglich Youngung Jeong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3409-3430,共22页
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio... The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin. 展开更多
关键词 Crystal plasticity TEXTURE finite element C-ring Three-point bending
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
11
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models
12
作者 Shuaishuai Xiao Jialong Shen +3 位作者 Jianing Zhao Jie Fang Caiyu Liang Lei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2681-2691,共11页
Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m... Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling. 展开更多
关键词 MICROSTRUCTURE electromagnetic sensor finite element duplex stainless steel
下载PDF
A Wave Superposition-Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water
13
作者 TANG Yu-hang ZHAO Zhe +3 位作者 LI Hai-chao PANG Fu-zhen TANG Yang DU Yuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期845-854,共10页
A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the rad... A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets. 展开更多
关键词 shallow water radiation noise wave superposition principle cylindrical shell finite element
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
14
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
A New Isogeometric Finite Element Method for Analyzing Structures
15
作者 Pan Su Jiaxing Chen +1 位作者 Ronggang Yang Jiawei Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1883-1905,共23页
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini... High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar. 展开更多
关键词 finite element method isogeometric analysis uniform B-spline non-uniform rational B-spline beam and bar
下载PDF
Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions
16
作者 Junyan Liu Ju Liu +3 位作者 Yan Wang Shuang Liu Qiao Wang Yihe Du 《Fluid Dynamics & Materials Processing》 EI 2024年第1期205-218,共14页
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory... The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase. 展开更多
关键词 Wellbore stability finite element acidizing operation well completion
下载PDF
A finite element model of the eye matched with in vitro experiments for the prediction of traumatic retinal detachment
17
作者 Duo Chen Xiaona Sun +10 位作者 Yuan Wu Min Tang Jinghui Wang Xiaofeng Qiao Yuanjie Zhu Zhiyang Zhang Xin Du Jieyi Guo Yepu Chen Linyuan Fan Xiaoyu Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第4期291-297,共7页
This study aimed to conduct finite element(FE)analysis matched with an in vitro experiment to analyze traumatic retinal detachments(TrRD)resulting from blunt trauma and provide stress and strain thresholds to predict ... This study aimed to conduct finite element(FE)analysis matched with an in vitro experiment to analyze traumatic retinal detachments(TrRD)resulting from blunt trauma and provide stress and strain thresholds to predict the occurrence of TrRD.The in vitro experiment was performed on forty-eight porcine eyes using a pendulum device.We examined dynamic mechanical responses at four energy levels.A FE model,based on experimental results and published data,was used to simulate TrRD.Fifty-one additional eyes underwent immediate pathological examination following blunt impact.A dynamic variation of velocities was observed post-impact,displaying an approximate cosine oscillation-attenuation profile.Energy absorption increased as the initial energy and differed significantly at four energy levels(p<0.001).FE simulation showed a peak strain of 0.462 in the anterior vitreous body and a peak stress of 1.408 MPa at the cornea at the high-energy level.During the energy transfer,the stress was initially observed in retinal region along the impact direction at the separation.TrRD were observed in injured eyes,where a few detachments were detected in control eyes.Correlations were performed between the proportion of pathological outcomes and FE results.In conclusion,this study suggests that stress contributes to the development of retinal detachment,providing an indicator to distinguish the occurrence of TrRD. 展开更多
关键词 Eye finite element analysis Ocular blunt trauma Traumatic retinal detachment
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
18
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
19
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization finite element modeling Convolutional neural network
下载PDF
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
20
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部