期刊文献+
共找到2,752篇文章
< 1 2 138 >
每页显示 20 50 100
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
1
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
2
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite Element methods Heat equation Predictor-Corrector Algorithm
下载PDF
Error estimates of H^1-Galerkin mixed finite element method for Schrdinger equation 被引量:28
3
作者 LIU Yang LI Hong WANG Jin-feng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期83-89,共7页
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t... An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition. 展开更多
关键词 H1-Galerkin mixed finite element method Schrdinger equation LBB condition optimal error estimates
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
4
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions 被引量:4
5
作者 Boling GUO Qiang XU Zhe YIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期403-416,共14页
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ... An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples. 展开更多
关键词 fractional percolation equation (FPE) Riemann-Liouville derivative frac-tional boundary condition finite difference method stability and convergence Toeplitzmatrix
下载PDF
Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations 被引量:3
6
作者 罗志强 陈志敏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期931-944,共14页
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ... A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically. 展开更多
关键词 three-dimensional (3D) nonlinear potential flow equation predictor-corrector finite difference method staggered grid nested iterative method 3D sloshing
下载PDF
An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate 被引量:2
7
作者 赵国忠 蔚喜军 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期50-63,共14页
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti... In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm. 展开更多
关键词 compressible gas dynamic equations RKDG finite element method Lagrangian coordinate multi- medium fluid
下载PDF
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
8
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
下载PDF
Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations 被引量:2
9
作者 陈刚 冯民富 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期953-970,共18页
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f... A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved. 展开更多
关键词 Navier-Stokes equation Ladyzhenskaya-Babu^ka-Brezzi (LBB) condition low-order finite element pressure projection method pressure gradient local projectionmethod
下载PDF
MIXED FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS AND ITS ALTERNATING-DIRECTION ITERATIVE SCHEME 被引量:1
10
作者 张怀宇 梁栋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期133-150,共18页
In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computat... In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper. 展开更多
关键词 SOBOLEV equation mixed finite ELEMENT method alternating-direction iteration.
下载PDF
A streamline diffusion nonconforming finite element method for the time-dependent linearized Navier-Stokes equations 被引量:1
11
作者 陈豫眉 谢小平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第7期861-874,共14页
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio... A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms. 展开更多
关键词 streamline diffusion method finite difference method nonconforming finite element method time-dependent linearized Navier-Stokes equations error estimate
下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
12
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
下载PDF
Weak Galerkin Finite Element Method for the Unsteady Stokes Equation 被引量:4
13
作者 Chen Ning Haiming Gu 《American Journal of Computational Mathematics》 2018年第1期108-119,共12页
The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the correspond... The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection. 展开更多
关键词 WEAK GALERKIN finite Element methods UNSTEADY STOKES equationS STOKES PROJECTION
下载PDF
An explicit finite volume element method for solving characteristic level set equation on triangular grids 被引量:1
14
作者 Sutthisak Phongthanapanich Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期911-921,共11页
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno... Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme. 展开更多
关键词 Keywords Characteristic level set equation - finite volume element method Explicit method Triangular grid Twophase incompressible flow
下载PDF
High-efciency improved symmetric successive over-relaxation preconditioned conjugate gradient method for solving large-scale finite element linear equations 被引量:1
15
作者 李根 唐春安 李连崇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1225-1236,共12页
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ... Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance. 展开更多
关键词 improved preconditioned conjugate gradient (PCG) method conjugate gradient method large-scale linear equation finite element method
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
16
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 Three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
A Finite Volume Unstructured Mesh Method for Fractional-in-space Allen-Cahn Equation 被引量:1
17
作者 CHEN Ai-min LIU Fa-wang 《Chinese Quarterly Journal of Mathematics》 2017年第4期345-354,共10页
Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh ... Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains. 展开更多
关键词 fractional-in-space Allen-Cahn equation finite volume method matrix transfertechnique preconditioned LANCZOS method
下载PDF
PERTURBATIONAL FINITE VOLUME METHOD FOR THE SOLUTION OF 2-D NAVIER-STOKES EQUATIONS ON UNSTRUCTURED AND STRUCTURED COLOCATED MESHES 被引量:1
18
作者 高智 代民果 +1 位作者 李桂波 柏威 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第2期242-251,共10页
Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were de... Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4. 展开更多
关键词 colocated grid structured grid unstructured grid perturbation finite volume method incompressible fluid NS equations SIMPLEC algorithm MSIMPLEC algorithm SIMPLER algorithm
下载PDF
The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method 被引量:2
19
作者 Serigne Bira Gueye 《Journal of Electromagnetic Analysis and Applications》 2014年第10期303-308,共6页
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T... A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena. 展开更多
关键词 1D POISSON equation finite Difference method TRIDIAGONAL Matrix INVERSION Thomas Algorithm GAUSSIAN ELIMINATION Potential Problem
下载PDF
Reduced-order finite element method based on POD for fractional Tricomi-type equation 被引量:1
20
作者 Jincun LIU Hong LI +1 位作者 Yang LIU Zhichao FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第5期647-658,共12页
The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general ... The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save mem- ory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be un- conditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs). 展开更多
关键词 reduced-order finite element method (FEM) proper orthogonal decompo-sition (POD) fractional Tricomi-type equation unconditionally stable error estimate
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部