In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element...In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.展开更多
Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolat...Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method, The solution accuracy is further improved by implementing an adaptive meshing technique to generaie finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems tire: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to moving heat source.展开更多
In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three ...In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.展开更多
On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an exampl...On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.展开更多
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multi...An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.展开更多
The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-paramet...The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.展开更多
A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain...A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.展开更多
The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulat...The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,展开更多
A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal...A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal-order interpolation functions for all variables of tile velocity components and pressure. The main advantage of the combined nlethod is that it inlproves the sohltion accuracy by coupling an error estinla- tion procedure to an adaptive meshing technique that generates small elements in regions with a large change ill sohmtion gradients, mid at the same time, larger elements in the other regions. The performance of the combined procedure is evaluated by analyzing one test case of the flow past a cylinder, for their transient and steady-state flow behaviors.展开更多
Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical si...Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.展开更多
The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D ...The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.展开更多
Building high confidence regression test suites to validate new system versions is a challenging problem. A modelbased approach to build a regression test suite from a given test suite is described. The generated test...Building high confidence regression test suites to validate new system versions is a challenging problem. A modelbased approach to build a regression test suite from a given test suite is described. The generated test suite includes every test that will traverse a change performed to produce the new version, and consists of only such tests to reduce the testing costs. Finite state machines extended with typed variables (EFSMs) are used to model systems and system changes are mapped to EFSM transition changes adding/deleting/replacing EFSM transitions and states. Tests are a sequence of input and expected output messages with concrete parameter values over the supported data types. An invariant is formulated to characterize tests whose runtime behavior can be accurately predicted by analyzing their descriptions along with the model. Incremental procedures to efficiently evaluate the invariant and to select tests for regression are developed. Overlaps among the test descriptions are exploited to extend the approach to simultaneously select multiple tests to reduce the test selection costs. Effectiveness of the approach is demonstrated by applying it to several protocols, Web services, and model programs extracted from a popular testing benchmark. Our experimental results show that the proposed approach is economical for regression test selection in all these examples. For all these examples, the proposed approach is able to identify all tests exercising changes more efficiently than brute-force symbolic evaluation.展开更多
The conventional finite element model (FEM) of a rod-type ultrasonic motor is usually simplified by means of continuous composite structure. Because the actual contact characteristics between the parts of the ultras...The conventional finite element model (FEM) of a rod-type ultrasonic motor is usually simplified by means of continuous composite structure. Because the actual contact characteristics between the parts of the ultrasonic motor is ignored, there is bigger error between the calculated values and experimental results. Aiming at solving problem, a new modeling method of a rod-type ultrasonic motor is presented to obtain a high-accuracy FEM. The bolt pretension and the normal contact stiffness and friction coefficient of the contact surface of ultrasonic motor are all considered in this method, and the significant parameters of working mode of the motor are selected by the response surface method, and the goal of calculating the structural response rapidly is realized by building the response surface model to replace the FEM. The result of finite element model updating shows that the average error of modal frequencies of updated model drops to 0.21% from 1.20%. The accuracy of FEM is obviously improved, which indicates that the FEM updating based on response surface method is of great application value on the design for a rod-type ultrasonic motor.展开更多
A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite e...A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.展开更多
Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behavior...Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.展开更多
文摘In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.
文摘Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method, The solution accuracy is further improved by implementing an adaptive meshing technique to generaie finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems tire: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to moving heat source.
文摘In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.
文摘On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
基金supported by the National Natural Science Foundation(10721062,11072051,90715037,10728205,91015003, 51021140004)the Program of Introducing Talents of Discipline to Universities(B08014)the National Key Basic Research Special Foundation of China(2010CB832704).
文摘An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.
基金Russian Foundation of Basic Research(No. 04-01-08034, 06-01-00293-a)
文摘The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1501901 and 2017YFA0603901)the Beijing Natural Science Foundation (Grant No. JQ18001)
文摘A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.
文摘The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,
文摘A combined characteristic-based split algorithm and all adaptive meshing technique for analyzing two-dimensional viscous incompressible flow are presented. Tile method uses the three-node triangular element with equal-order interpolation functions for all variables of tile velocity components and pressure. The main advantage of the combined nlethod is that it inlproves the sohltion accuracy by coupling an error estinla- tion procedure to an adaptive meshing technique that generates small elements in regions with a large change ill sohmtion gradients, mid at the same time, larger elements in the other regions. The performance of the combined procedure is evaluated by analyzing one test case of the flow past a cylinder, for their transient and steady-state flow behaviors.
文摘Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.
文摘The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.
文摘Building high confidence regression test suites to validate new system versions is a challenging problem. A modelbased approach to build a regression test suite from a given test suite is described. The generated test suite includes every test that will traverse a change performed to produce the new version, and consists of only such tests to reduce the testing costs. Finite state machines extended with typed variables (EFSMs) are used to model systems and system changes are mapped to EFSM transition changes adding/deleting/replacing EFSM transitions and states. Tests are a sequence of input and expected output messages with concrete parameter values over the supported data types. An invariant is formulated to characterize tests whose runtime behavior can be accurately predicted by analyzing their descriptions along with the model. Incremental procedures to efficiently evaluate the invariant and to select tests for regression are developed. Overlaps among the test descriptions are exploited to extend the approach to simultaneously select multiple tests to reduce the test selection costs. Effectiveness of the approach is demonstrated by applying it to several protocols, Web services, and model programs extracted from a popular testing benchmark. Our experimental results show that the proposed approach is economical for regression test selection in all these examples. For all these examples, the proposed approach is able to identify all tests exercising changes more efficiently than brute-force symbolic evaluation.
基金supported by Foundation of the State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-0314G02)Open Foundation of Engineering Mechanics Analysis of Key Laboratory of Jiangsu Province+1 种基金Foundation of Basic and Advanced Technology Research of Henan Province(152300410040)Foundation of Science and Technology Development of Zhengzhou(131PPTGG409-1)
文摘The conventional finite element model (FEM) of a rod-type ultrasonic motor is usually simplified by means of continuous composite structure. Because the actual contact characteristics between the parts of the ultrasonic motor is ignored, there is bigger error between the calculated values and experimental results. Aiming at solving problem, a new modeling method of a rod-type ultrasonic motor is presented to obtain a high-accuracy FEM. The bolt pretension and the normal contact stiffness and friction coefficient of the contact surface of ultrasonic motor are all considered in this method, and the significant parameters of working mode of the motor are selected by the response surface method, and the goal of calculating the structural response rapidly is realized by building the response surface model to replace the FEM. The result of finite element model updating shows that the average error of modal frequencies of updated model drops to 0.21% from 1.20%. The accuracy of FEM is obviously improved, which indicates that the FEM updating based on response surface method is of great application value on the design for a rod-type ultrasonic motor.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB209402)the National Natural Science Foundation of China(Grant No.51177041)the Fundamental Research Funds for the Central Universities,China(Grant No.12QX01)
文摘A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.
文摘Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.