Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-m...Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10902046,11032006and11121202)the Fundamental Research Funds for the Central Universities(lzujbky-2012-2)+1 种基金the Fund of Ministry of Education of the Program of Changjiang Scholars and Innovative Research Team in University(No.IRT0628)the Science Foundation of the Ministry of Education of China for Ph.D.program
文摘Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.