For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th...To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.展开更多
This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired...This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.展开更多
An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can...An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.展开更多
This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking c...This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.展开更多
In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, ...In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.展开更多
We demonstrate the constant feedback and the modified constant feedback method to the Hénon map. Using the convergence of the chaotic orbit in finite time, we can control the system from chaos to the stable fixed...We demonstrate the constant feedback and the modified constant feedback method to the Hénon map. Using the convergence of the chaotic orbit in finite time, we can control the system from chaos to the stable fixed point, and even to the stable period-2 orbit or higher periodic orbit by the action of a proper feedback strength and pulse interval. We also find that the multi-steady solutions appear with the same control strength and different initial conditions. The aim of this control method is explicit and the feedback strength is easy to determine. The method is robust under the presence of weak external noise.展开更多
This paper presents a synchronization method, motivated from the constructive controllability analysis, for two identical chaotic systems. This technique is applied to achieve perfect synchronization for Lorenz system...This paper presents a synchronization method, motivated from the constructive controllability analysis, for two identical chaotic systems. This technique is applied to achieve perfect synchronization for Lorenz systems and coupled dynamo systems. It turns out that states of the drive system and the response system are synchronized within finite time, and the reaching time is independent of initial conditions, which can be specified in advance. In addition to the simultaneous synchronization, the response system is synchronized un-simultaneously to the drive system with different reaching time for each state. The performance of the resulting system is analytically quantified in the face of initial condition error, and with numerical experiments the proposed method is demonstrated to perform well.展开更多
A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities...A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities. Suficient and ncessaryconditions are provided to guarantee infinte time convergence and boundedness of the solutions. It turns out that the numberof agents which have cotinuous contol law plays an ssenan role in fnite-tine conerence In adidio it is shown thatthe unit bals itoduced bylp, norms. where p ∈[1,∞] , are inariat for the closed lop.展开更多
In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified tr...In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented, Simulation results validate the effectiveness of the proposed control law.展开更多
We consider a SEIR epidemic model with infectious force in latent period and infected period under discontinuous treatment.The treatment rate has at most a finite number of jump discontinuities in every compact interv...We consider a SEIR epidemic model with infectious force in latent period and infected period under discontinuous treatment.The treatment rate has at most a finite number of jump discontinuities in every compact interval.By using Lyapunov theory for discontinuous differential equations and other techniques on non-smooth analysis,the basic reproductive number Ro is proved to be a sharp threshold value which completely determines the dynamics of the model.If Ro<1,then there exists a disease-free equilibrium which is globally stable.If Ro>1,the disease-free equilibrium becomes unstable and there exists an endemic equilibrium which is globally stable.We discuss that the disease will die out in a finite time which is impossible for the corresponding SEIR model with continuous treatment.Furthermore,the numerical simulations indicate that strengthening treatment measure after infective individuals reach some level is beneficial to disease control.展开更多
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金supported by the Funds for the Central Universities。
文摘To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.
文摘This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.
文摘An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.
基金supported by the National Natural Science Foundation of China under Grant No.61174037
文摘This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.
基金This work was supported by the Key Project of Tianjin Science and Technology Support Program (No. 15ZCZDGX00810), the Natural Science Foundation of Tianjin (No. 14JCZDJC31900), and the National Natural Science Foundation of China (Nos. 91748121, 90916004, 60804004).
文摘In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor's attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor's roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.
基金The project supported by the Key Program of National Natural Science Foundation of China under Grant No. 10335010
文摘We demonstrate the constant feedback and the modified constant feedback method to the Hénon map. Using the convergence of the chaotic orbit in finite time, we can control the system from chaos to the stable fixed point, and even to the stable period-2 orbit or higher periodic orbit by the action of a proper feedback strength and pulse interval. We also find that the multi-steady solutions appear with the same control strength and different initial conditions. The aim of this control method is explicit and the feedback strength is easy to determine. The method is robust under the presence of weak external noise.
基金Project supported by the National Natural Science Foundation of China (Grant No 60474005).
文摘This paper presents a synchronization method, motivated from the constructive controllability analysis, for two identical chaotic systems. This technique is applied to achieve perfect synchronization for Lorenz systems and coupled dynamo systems. It turns out that states of the drive system and the response system are synchronized within finite time, and the reaching time is independent of initial conditions, which can be specified in advance. In addition to the simultaneous synchronization, the response system is synchronized un-simultaneously to the drive system with different reaching time for each state. The performance of the resulting system is analytically quantified in the face of initial condition error, and with numerical experiments the proposed method is demonstrated to perform well.
文摘A fnite.-time consensus protocol is proposed for multi -dimensional multi- agent systems, using direction peserving signumcontrols. Flipp solutions and nonsmooh analysis tehniques are adopted to handle discontinuities. Suficient and ncessaryconditions are provided to guarantee infinte time convergence and boundedness of the solutions. It turns out that the numberof agents which have cotinuous contol law plays an ssenan role in fnite-tine conerence In adidio it is shown thatthe unit bals itoduced bylp, norms. where p ∈[1,∞] , are inariat for the closed lop.
文摘In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented, Simulation results validate the effectiveness of the proposed control law.
基金supported by the National Nature Science Foundation of China(11271154).
文摘We consider a SEIR epidemic model with infectious force in latent period and infected period under discontinuous treatment.The treatment rate has at most a finite number of jump discontinuities in every compact interval.By using Lyapunov theory for discontinuous differential equations and other techniques on non-smooth analysis,the basic reproductive number Ro is proved to be a sharp threshold value which completely determines the dynamics of the model.If Ro<1,then there exists a disease-free equilibrium which is globally stable.If Ro>1,the disease-free equilibrium becomes unstable and there exists an endemic equilibrium which is globally stable.We discuss that the disease will die out in a finite time which is impossible for the corresponding SEIR model with continuous treatment.Furthermore,the numerical simulations indicate that strengthening treatment measure after infective individuals reach some level is beneficial to disease control.