In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defin...In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defined by Caputo fractional derivative,is discretized through L2−1σformula,and a two step scheme is used to approximate the time first-order derivative at time tn−α/2,where the nonlinear term is approximated by using a matching linearized difference scheme.A family of quadratic finite volume element schemes with two parameters are proposed for the spatial discretization,where the range of values for two parameters areβ1∈(0,1/2),β2∈(0,2/3).For testing the precision of numerical algorithms,we calculate some numerical examples which have known exact solution or unknown exact solution by several kinds of quadratic finite volume element schemes,and contrast with the results of an existing quadratic finite element scheme by drawing diversified comparison plots and showing the detailed data of L2 error results and convergence orders.Numerical results indicate that,L2 error estimate of one scheme with parameters β_(1)=(3−√3)/6,β2=(6+√3−√21+6√3)/9 is O(h^(3)+△t^(2)),and L^(2) error estimates of other schemes are O(h^(2)+△t^(2)),where h and △t denote the spatial and temporal discretization parameters,respectively.展开更多
Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energ...Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids.Furthermore,we prove that the approximate derivatives are convergent of order two.Finally,numerical examples verify the theoretical results.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(No.11871009).
文摘In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defined by Caputo fractional derivative,is discretized through L2−1σformula,and a two step scheme is used to approximate the time first-order derivative at time tn−α/2,where the nonlinear term is approximated by using a matching linearized difference scheme.A family of quadratic finite volume element schemes with two parameters are proposed for the spatial discretization,where the range of values for two parameters areβ1∈(0,1/2),β2∈(0,2/3).For testing the precision of numerical algorithms,we calculate some numerical examples which have known exact solution or unknown exact solution by several kinds of quadratic finite volume element schemes,and contrast with the results of an existing quadratic finite element scheme by drawing diversified comparison plots and showing the detailed data of L2 error results and convergence orders.Numerical results indicate that,L2 error estimate of one scheme with parameters β_(1)=(3−√3)/6,β2=(6+√3−√21+6√3)/9 is O(h^(3)+△t^(2)),and L^(2) error estimates of other schemes are O(h^(2)+△t^(2)),where h and △t denote the spatial and temporal discretization parameters,respectively.
基金supported by NSFC Project(Grant No.11031006,91130002,11171281)the Key Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(Grant No.2011FJ2011)+2 种基金Specialized research Fund for the Doctoral Program of Higher Education(Grant No.20124301110003)Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT1179)Hunan Provincial Natural Science Foundation of China(Grant No.12JJ3010)。
文摘Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids.Furthermore,we prove that the approximate derivatives are convergent of order two.Finally,numerical examples verify the theoretical results.