期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Matrix-Free Higher-Order Finite Element Method for Parallel Simulation of Compressible and Nearly-Incompressible Linear Dedicated to Professor Karl Stark Pister for his 95th birthday Elasticity on Unstructured Meshes
1
作者 Arash Mehraban Henry Tufo +1 位作者 Stein Sture Richard Regueiro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1283-1303,共21页
Higher-order displacement-based finite element methods are useful for simulating bending problems and potentially addressing mesh-locking associated with nearly-incompressible elasticity,yet are computationally expens... Higher-order displacement-based finite element methods are useful for simulating bending problems and potentially addressing mesh-locking associated with nearly-incompressible elasticity,yet are computationally expensive.To address the computational expense,the paper presents a matrix-free,displacement-based,higher-order,hexahedral finite element implementation of compressible and nearly-compressible(ν→0.5)linear isotropic elasticity at small strain with p-multigrid preconditioning.The cost,solve time,and scalability of the implementation with respect to strain energy error are investigated for polynomial order p=1,2,3,4 for compressible elasticity,and p=2,3,4 for nearly-incompressible elasticity,on different number of CPU cores for a tube bending problem.In the context of this matrix-free implementation,higher-order polynomials(p=3,4)generally are faster in achieving better accuracy in the solution than lower-order polynomials(p=1,2).However,for a beam bending simulation with stress concentration(singularity),it is demonstrated that higher-order finite elements do not improve the spatial order of convergence,even though accuracy is improved. 展开更多
关键词 MATRIX-FREE HIGHER-ORDER finite element parallel linear elasticity multigrid solvers unstructured meshes
下载PDF
Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes 被引量:2
2
作者 Walter Boscheri Michael Dumbser 《Communications in Computational Physics》 SCIE 2013年第10期1174-1206,共33页
In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian(ALE)one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimension... In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian(ALE)one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes.A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor proposed in[25].For that purpose,a new element-local weak formulation of the governing PDE is adopted on moving space-time elements.The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes.Moreover,a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element.To maintain algorithmic simplicity,the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges.This is possible in the ALE framework,which allows a local mesh velocity that is different from the local fluid velocity.We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics. 展开更多
关键词 EULERIAN high order reconstruction WENO finite volume local space-time Galerkin predictor moving unstructured meshes Euler equations
原文传递
High-order compact finite volume methods on unstructured grids with adaptive mesh refinement for solving inviscid and viscous flows 被引量:4
3
作者 Jianhua PAN Qian WANG +1 位作者 Yusi ZHANG Yuxin REN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第9期1829-1841,共13页
In the present paper, high-order finite volume schemes on unstructured grids developed in our previous papers are extended to solve three-dimensional inviscid and viscous flows. The highorder variational reconstructio... In the present paper, high-order finite volume schemes on unstructured grids developed in our previous papers are extended to solve three-dimensional inviscid and viscous flows. The highorder variational reconstruction technique in terms of compact stencil is improved to reduce local condition numbers. To further improve the efficiency of computation, the adaptive mesh refinement technique is implemented in the framework of high-order finite volume methods. Mesh refinement and coarsening criteria are chosen to be the indicators for certain flow structures. One important challenge of the adaptive mesh refinement technique on unstructured grids is the dynamic load balancing in parallel computation. To solve this problem, the open-source library p4 est based on the forest of octrees is adopted. Several two-and three-dimensional test cases are computed to verify the accuracy and robustness of the proposed numerical schemes. 展开更多
关键词 Adaptive mesh refinement Compact stencil High-order finite volume scheme unstructured grids Variational reconstruction
原文传递
A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws 被引量:1
4
作者 Raphael Loubere Michael Dumbser Steven Diot 《Communications in Computational Physics》 SCIE 2014年第8期718-763,共46页
In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and com... In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and computationally efficient Finite Volume(FV)scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions,respectively.The Multi-dimensional Optimal Order Detection(MOOD)method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes.It is an arbitrary high-order accurate Finite Volume scheme in space,using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities.In the following work,the time discretization is performed with an elegant and efficient one-step ADER procedure.Doing so,we retain the good properties of the MOOD scheme,that is to say the optimal high-order of accuracy is reached on smooth solutions,while spurious oscillations near singularities are prevented.The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D,but it also increases the stability of the overall scheme.A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost,robustness,accuracy and efficiency.The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive(memory and/or CPU time),or because it is more accurate for a given grid resolution.A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws:the Euler equations of compressible gas dynamics,the classical equations of ideal magneto-Hydrodynamics(MHD)and finally the relativistic MHD equations(RMHD),which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation.All tests are run on genuinely unstructured grids composed of simplex elements. 展开更多
关键词 finite volume high-order conservation law polynomial reconstruction ADER MOOD hyperbolic PDE unstructured meshes finite volume one-step time discretization local continuous space-time Galerkin method WENO Euler equations MHD equations relativistic MHD equations.
原文传递
代数多层网格法及其在固体力学计算中的应用研究 被引量:1
5
作者 张平 肖映雄 舒适 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第3期50-64,共15页
代数多层网格(AMG)法是求解由弹性力学方程有限元离散化所得大型代数系统的最为有效的数值方法之一.该文对弹性有限元分析中的AMG法的研究进展及其相关应用领域进行了综述,着重介绍了网格粗化、插值算子及光滑迭代子等几个要素对AMG法... 代数多层网格(AMG)法是求解由弹性力学方程有限元离散化所得大型代数系统的最为有效的数值方法之一.该文对弹性有限元分析中的AMG法的研究进展及其相关应用领域进行了综述,着重介绍了网格粗化、插值算子及光滑迭代子等几个要素对AMG法在运算效率和鲁棒性(robustness)等方面的影响,并提出了今后进一步研究的方向和内容. 展开更多
关键词 弹性力学方程 代数多层网格 有限元 插值算子 网格粗化 非结构网格
下载PDF
二维非结构网格的非振荡有限体积方法 被引量:3
6
作者 宋松和 全惠云 《数值计算与计算机应用》 CSCD 北大核心 2004年第3期161-164,共4页
A second nonoscillatory finite volume scheme, based on a new linear reconstruction to the flow variable, is given for 2d hyperbolic conservation laws on unstructured triangular mesh. Numerical results for plate shock ... A second nonoscillatory finite volume scheme, based on a new linear reconstruction to the flow variable, is given for 2d hyperbolic conservation laws on unstructured triangular mesh. Numerical results for plate shock wave reflection and cavity flow are presented. 展开更多
关键词 二维 非结构网格 有限体积方法 双曲型方程 约束条件
原文传递
基于非结构四边形网格的WENO格式 被引量:1
7
作者 赵丰祥 潘亮 王双虎 《计算物理》 EI CSCD 北大核心 2018年第5期525-534,共10页
基于非结构四边形网格发展求解双曲守恒律的三阶加权基本无振荡(WENO)格式.针对任意非结构四边形网格选取重构模板,并给出基于线性多项式的三阶线性重构.但对于一般的非结构四边形网格,会出现非常大的线性权和负权,使得非线性重构的W... 基于非结构四边形网格发展求解双曲守恒律的三阶加权基本无振荡(WENO)格式.针对任意非结构四边形网格选取重构模板,并给出基于线性多项式的三阶线性重构.但对于一般的非结构四边形网格,会出现非常大的线性权和负权,使得非线性重构的WENO格式对光滑问题也不稳定.本文给出一个处理非常大的线性权的优化重构方法,对优化后得到的负线性权采用分裂方法进行处理.对于非线性权,提出一种考虑局部网格和物理量间断的新光滑度量因子.采用优化重构方法和新的非线性权,当前的三阶WENO格式在质量很差的网格上也具有很好的稳定性.理论的三阶精度在数值精度测试算例中得到验证,同时一范数和无穷范数的误差绝对值不依赖于网格质量;具有强间断的数值结果证明了当前格式的有效性. 展开更多
关键词 WENO重构 非结构四边形网格 双曲守恒律 有限体积格式
原文传递
非结构动网格高精度计算格式的设计与实现 被引量:3
8
作者 吴卓航 任玉新 《气动研究与试验》 2023年第1期54-67,共14页
本文研究了动网格高精度算法在非结构网格上的设计和实现问题.动网格上的高精度重构方法为最近发展的变分重构方法;采用径向基插值方法实现了动网格的运动和变形.提出了在给定边界速度变化的时间历程和给定边界位置坐标变化的时间历程... 本文研究了动网格高精度算法在非结构网格上的设计和实现问题.动网格上的高精度重构方法为最近发展的变分重构方法;采用径向基插值方法实现了动网格的运动和变形.提出了在给定边界速度变化的时间历程和给定边界位置坐标变化的时间历程条件下,与变分重构方法和隐式时间推进相适应的高精度的动网格几何量计算方案.数值算例的计算结果显示,高阶变分重构方法在动网格上有较高的计算精度,而且相对二阶方法展现出了明显的优势. 展开更多
关键词 非结构动网格 高精度有限体积方法 变分重构 径向基函数插值 网格变形算法
原文传递
非定常扩散方程基于调和平均点插值的有限体积格式
9
作者 张海成 单丽 《中国科学:数学》 CSCD 北大核心 2022年第8期969-988,共20页
本文研究非定常扩散方程适用于扭曲和非结构网格的单元中心型的有限体积格式.在网格边上离散法向流时,选取当前网格边及与其相邻网格边上的调和平均点作为辅助插值点,通过它们与单元中心点不同的组合形式给出4类法向流的离散近似,最后... 本文研究非定常扩散方程适用于扭曲和非结构网格的单元中心型的有限体积格式.在网格边上离散法向流时,选取当前网格边及与其相邻网格边上的调和平均点作为辅助插值点,通过它们与单元中心点不同的组合形式给出4类法向流的离散近似,最后通过调和平均点的两点插值算法,将其替换成相邻单元的中心未知量,进而建立4种单元中心型有限体积格式.时间导数项采用向后Euler格式进行离散.该格式具有模板小、易实现的优点,满足局部守恒和二阶收敛的特性.在一定网格假设前提下,理论上证明了算法的稳定性和收敛性.数值上考虑扩散系数是连续的、间断的、各向异性的甚至依赖于未知量是非线性的等情形,分别在非结构三角形、四边形和多边形网格上进行求解.结果表明,前两种算法对不同网格不同类型扩散系数问题上的鲁棒性更好,L^(2)误差均可达到二阶收敛,H^(1)误差接近一阶甚至高于一阶收敛;后两种算法对网格的依赖性更强. 展开更多
关键词 有限体积法 非定常扩散方程 非结构网格 线性精确 调和平均点
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部