In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho...In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.展开更多
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important...Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with smallscale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot's poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultra- sonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thick- nesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Qsc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.展开更多
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been iden...Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.展开更多
During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects o...During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.展开更多
The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the M...The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.展开更多
Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectiv...Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media.展开更多
The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the...The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.展开更多
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-differ...Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.展开更多
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met...Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling.展开更多
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ...To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interest...Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.展开更多
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st...Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.展开更多
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio...Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.展开更多
文摘In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
基金supported by the National Natural Science Foundation of China (40925013)the Strategic Leading Science and Technology Programme (Class B) of the Chinese Academy of Sciences (Grant No.XDB10010400)the China National Major Science and Technology Project (2011ZX05023-005004)
文摘Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with smallscale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot's poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultra- sonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thick- nesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Qsc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.
基金National Key R&D Program of China:Effectively Utilized and Optimized Surface Water and Groundwater in the Fault Basin(2016YFC0502502)China Geology Survey(DD20190356&DD20189262)+1 种基金Chinese Academy of Geological Sciences(YKWF201628)National Natural Science Foundation of China(No.41272301)
文摘Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.
基金sponsed by National Natural Science Foundation of China(NSFC,Grant No.41304077)the Natural Basic Research Program of China(the“973 Project,”Grant No.2013CB733303)Postdoctoral Science Foundation of China(Grant No.2014T70740)
文摘During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.
基金supported by the Natural Science Foundation of China(No.41374078)Geological Survey Projects of Ministry of Land and Resources of China(No.12120113086100 and 12120113101300)
文摘The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.
基金the National Natural Science Foundation of China(No.41874144)the Research Foundation of China University of PetroleumBeijing at Karamay(RCYJ2018A-01-001).
文摘Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media.
基金Fund Project of Key Lab of Geophysical Exploration of China National Petroleum Corporation (GPR0408).
文摘The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.
基金supported by the National Basic Research Program of China (No. 2013CB228604)the National Science and Technology Major Project (No. 2011ZX05030-004-002,2011ZX05019-003)the National Natural Science Foundation (No. 41004050)
文摘Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
基金This research is supported by the National Natural Science Foundation of China(NSFC)under contract no.42274147.
文摘Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling.
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
文摘To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金supported by the 863 Program (Grant no.2006AA09Z323)the 973 Program (Grant No.2006CB202402)
文摘Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.
基金supported by National Natural Science Foundation of China(41504109,41404099)the Natural Science Foundation of Shandong Province(BS2015HZ008)the project of "Distinguished Professor of Jiangsu Province"
文摘Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
基金Supported by the National Natural Science Foundation of China(Nos. 41206043, 40930845)the Open Foundation of Key Laboratory of Marine Geology and Environment of Chinese Academy of Sciences(No. MGE2011KG07)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-229)the National Basic Research Program of China (973 Program) (No. 2009CB219505)
文摘Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.