Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-freque...Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-frequency electromagnetic fields on the environment and which are capable of modifying and destroying our ecosystem. Particular interest was given in this article due to a massive influx of population living near high voltage lines. The analysis and simulation of the influence of low frequency electromagnetic fields on living beings in the vicinity of high voltage sources 132 kV and 220 kV in urban areas in DR Congo is the subject of our research with a view to estimating the level of exposure of humans to low frequency electromagnetic fields. To carry out our research, we used the classic method of analyzing the field produced near a high voltage line based on Maxwell’s image theory, the Maxwell-Gauss theorem and Maxwell-Ampère theorem to model and quantify low-frequency electromagnetic fields in the vicinity of high-voltage lines. The 2D FDTD numerical formulation was developed from telegraphers’ equations and allowed us to obtain models of current and voltage induced by electromagnetic fields on living beings below and near HV lines. The different simulations carried out on the proposed models illustrate the effects of the electrical and geometric parameters of the pylons on the distribution of the electromagnetic field in the vicinity of the HV lines. The results obtained were compared to the safety limits recommended by the standards.展开更多
In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not req...In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not require permittivity averaging so that better accuracy can be achieved. Our numerical results on optical force computation show that the standard FDTD method converges linearly, while the proposed method achieves quadratic convergence and better accuracy.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) b...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.展开更多
The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a ...The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.展开更多
In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is i...In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.展开更多
This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Mu...This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Multilayer Planar structure. Using the equivalence principle, the original problem can be decomposed into two sub regions and solve each sub region separately. An interpolation scheme is proposed for communicating between the FDTD fields and WCIP wave, which will not require the effort of fitting the WCIP mesh to the FDTD cells in the interface region. This method is applied to calculate the scattering parameters of arbitrary (3-D) microwave structures. Applying FDTD to 3D discontinuity and WCIP to the remaining region preserves the advantages of both WCIP flexibility and FDTD efficiency. A comparison of the results with the FDTD staircasing data verifies the accuracy of the proposed method.展开更多
In this paper, Finite Difference Time Domain (FDTD) is utilized to simulate metamaterials of Double Negative (DNG) origin that refers to those materials having simultaneous negative permittivity and permeability. The ...In this paper, Finite Difference Time Domain (FDTD) is utilized to simulate metamaterials of Double Negative (DNG) origin that refers to those materials having simultaneous negative permittivity and permeability. The problem regarding space formulation is achieved by means of auxiliary differential equation method (ADE), which is easy, reliable and also causal process in nature thus making it proficient. It uses fair approximations to explicate the model. Mur’s boundary condition is used for 1-D problem space and convolution perfectly matched layer boundary is implemented for 2-D problem space. The properties of metamaterial conform their speculations of energy absorption, enhancement and backward propagation property with the aid of graphs engineered by Matlab simulation both in 1-D and 2-D. Also, the interaction of fields on DNG and Double Positive (DPS) layers is contrasted. The results achieved elucidate the validity and effectiveness of the ADE method and the Convolution Perfectly Match Layer (CPML) in designing DNG metamaterials.展开更多
By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for...By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for three and five waveguide systems.The field distribution in multiwaveguides is given.展开更多
文摘Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-frequency electromagnetic fields on the environment and which are capable of modifying and destroying our ecosystem. Particular interest was given in this article due to a massive influx of population living near high voltage lines. The analysis and simulation of the influence of low frequency electromagnetic fields on living beings in the vicinity of high voltage sources 132 kV and 220 kV in urban areas in DR Congo is the subject of our research with a view to estimating the level of exposure of humans to low frequency electromagnetic fields. To carry out our research, we used the classic method of analyzing the field produced near a high voltage line based on Maxwell’s image theory, the Maxwell-Gauss theorem and Maxwell-Ampère theorem to model and quantify low-frequency electromagnetic fields in the vicinity of high-voltage lines. The 2D FDTD numerical formulation was developed from telegraphers’ equations and allowed us to obtain models of current and voltage induced by electromagnetic fields on living beings below and near HV lines. The different simulations carried out on the proposed models illustrate the effects of the electrical and geometric parameters of the pylons on the distribution of the electromagnetic field in the vicinity of the HV lines. The results obtained were compared to the safety limits recommended by the standards.
基金supported by the Air Force Office of Scientific Research (AFOSR) under Grant numbers FA9550-04-1-0213 and FA9550-07-1-0010
文摘In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not require permittivity averaging so that better accuracy can be achieved. Our numerical results on optical force computation show that the standard FDTD method converges linearly, while the proposed method achieves quadratic convergence and better accuracy.
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金National Natural Science Foundation of China (No. 60471002) and the Natural Science Foundation ofJiangxi Province (No. 0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.
文摘The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20010614003)
文摘In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.
文摘This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Multilayer Planar structure. Using the equivalence principle, the original problem can be decomposed into two sub regions and solve each sub region separately. An interpolation scheme is proposed for communicating between the FDTD fields and WCIP wave, which will not require the effort of fitting the WCIP mesh to the FDTD cells in the interface region. This method is applied to calculate the scattering parameters of arbitrary (3-D) microwave structures. Applying FDTD to 3D discontinuity and WCIP to the remaining region preserves the advantages of both WCIP flexibility and FDTD efficiency. A comparison of the results with the FDTD staircasing data verifies the accuracy of the proposed method.
文摘In this paper, Finite Difference Time Domain (FDTD) is utilized to simulate metamaterials of Double Negative (DNG) origin that refers to those materials having simultaneous negative permittivity and permeability. The problem regarding space formulation is achieved by means of auxiliary differential equation method (ADE), which is easy, reliable and also causal process in nature thus making it proficient. It uses fair approximations to explicate the model. Mur’s boundary condition is used for 1-D problem space and convolution perfectly matched layer boundary is implemented for 2-D problem space. The properties of metamaterial conform their speculations of energy absorption, enhancement and backward propagation property with the aid of graphs engineered by Matlab simulation both in 1-D and 2-D. Also, the interaction of fields on DNG and Double Positive (DPS) layers is contrasted. The results achieved elucidate the validity and effectiveness of the ADE method and the Convolution Perfectly Match Layer (CPML) in designing DNG metamaterials.
文摘By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for three and five waveguide systems.The field distribution in multiwaveguides is given.
文摘提出一种新的节省计算空间的FDTD-PWS混合算法,并应用于透镜天线的焦面场分析.首先采用FDTD(Finite-Difference Time-Domain)求解得到聚焦透镜天线的口面场的幅度和相位分布,再通过PWS(Plane Wave Spectrum)外推至焦平面,求解得出焦面场分布.根据天线场分布的对称性,将PEC(Perfect Electric Conductor)和PMC(Perfect Magnetic Conduc-tor)边界应用于FDTD的仿真过程,使仿真模型缩减为原模型的1/4,进一步节省了计算空间.应用于毫米波聚焦透镜天线的焦面场仿真分析,并对其焦面场进行平面近场扫描测试,将仿真结果进行探头补偿后与实验数据作比较,证明该方法是精确和高效的.