期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach 被引量:6
1
作者 Pooya Hamdi Doug Stead Davide Elmo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期609-625,共17页
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ... Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed. 展开更多
关键词 finite-discrete element method(fdem) Micro discrete fracture network(μDFN) Brittle fracture
下载PDF
Assessment of strain bursting in deep tunnelling by using the finite-discrete element method 被引量:8
2
作者 Ioannis Vazaios Mark S.Diederichs Nicholas Vlachopoulos 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期12-37,共26页
Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. Wh... Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. While local experience, field monitoring, and informed data-rich analysis are some of the tools commonly used to manage the hazards and the associated risks, advanced numerical techniques based on discontinuum modelling have also shown potential in assisting in the assessment of rockbursting. In this study, the hybrid finite-discrete element method(FDEM) is employed to investigate the failure and fracturing processes, and the mechanisms of energy storage and rapid release resulting in bursting, as well as to assess its utility as part of the design process of underground excavations.Following the calibration of the numerical model to simulate a deep excavation in a hard, massive rock mass, discrete fracture network(DFN) geometries are integrated into the model in order to examine the impact of rock structure on rockbursting under high in situ stresses. The obtained analysis results not only highlight the importance of explicitly simulating pre-existing joints within the model, as they affect the mobilised failure mechanisms and the intensity of strain bursting phenomena, but also show how the employed joint network geometry, the field stress conditions, and their interaction influence the extent and depth of the excavation induced damage. Furthermore, a rigorous analysis of the mass and velocity of the ejected rock blocks and comparison of the obtained data with well-established semi-empirical approaches demonstrate the potential of the method to provide realistic estimates of the kinetic energy released during bursting for determining the energy support demand. 展开更多
关键词 ROCKBURST finite-discrete element method(fdem) Deep TUNNELLING Hard rock EXCAVATIONS Brittle fracturing DISCRETE fracture network(DFN)
下载PDF
GPGPU-parallelised hybrid finite-discrete element modelling of rock chipping and fragmentation process in mechanical cutting 被引量:6
3
作者 Mojtaba Mohammadnejad Sevda Dehkhoda +2 位作者 Daisuke Fukuda Hongyuan Liu Andrew Chan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期310-325,共16页
Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit... Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit finite element method(FEM) and bonded particle model(BPM),in order to improve cutting efficiency.This study investigates the application of a general-purpose graphic-processing-unit parallelised hybrid finite-discrete element method(FDEM) which enjoys the advantages of both explicit FEM and BPM,in modelling the rock chipping and fragmentation process in the rock scratch test of mechanical rock cutting.The input parameters of FDEM are determined through a calibration procedure of modelling conventional Brazilian tensile and uniaxial compressive tests of limestone,A series of scratch tests with various cutting velocities,cutter rake angles and cutting depths is then modelled using FDEM with calibrated input parameters.A few cycles of cutter/rock interactions,including their engagement and detachment process,are modelled for each case,which is conducted for the first time to the best knowledge of the authors,thanks to the general purpose graphic processing units(GPGPU) parallelisation.The failure mechanism,cutting force,chipping morphology and effect of various factors on them are discussed on the basis of the modelled results.Finally,it is concluded that GPGPU-parallelised FDEM provides a powerful tool to further study rock cutting and improve cutting efficiencies since it can explicitly capture different fracture mechanisms contributing to the rock chipping as well as chip formation and the separation process in mechanical cutting.Moreover,it is concluded that chipping is mostly owed to the mix-mode Ⅰ-Ⅱ fracture in all cases although mode Ⅱ cracks and mode Ⅰ cracks are the dominant failures in rock cutting with shallow and deep cutting depths,respectively.The chip morphology is found to be a function of cutter velocdty,cutting depth and cutter rake angle. 展开更多
关键词 Numerical simulation finite-discrete element method(fdem) ROCK CUTTING CHIPPING Cracking
下载PDF
Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method 被引量:8
4
作者 Qi Zhao Andrea Lisjak +2 位作者 Omid Mahabadi Qinya Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期574-581,共8页
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ... Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydraulic fracturing(HF) Numerical simulation Microseismic(MS) finite-discrete element method(fdem) Clustering Kernel density estimation(KDE)
下载PDF
冲旋步进钻井提速方法的井底裂纹拓展特性
5
作者 刘永旺 刘嘉雄 +3 位作者 管志川 王华健 赵国山 张曙辉 《石油机械》 北大核心 2024年第7期45-53,106,共10页
针对深部地层井底岩石硬度高、强度大和应力集中现象导致的岩石可钻性差、破岩效率低和使用寿命短的问题,提出旋冲钻井和差压步进破岩方法相结合的冲旋步进钻井提速新理念。为了研究冲击作用下差压步进钻头破碎地层岩石的裂纹拓展规律,... 针对深部地层井底岩石硬度高、强度大和应力集中现象导致的岩石可钻性差、破岩效率低和使用寿命短的问题,提出旋冲钻井和差压步进破岩方法相结合的冲旋步进钻井提速新理念。为了研究冲击作用下差压步进钻头破碎地层岩石的裂纹拓展规律,采用有限-离散元(FDEM)方法建立了球齿冲击三维薄板模型,开展了球齿在不同冲击能量、冲击位置及岩石种类等条件下的冲击破岩过程模拟,获得了阶梯型井底岩石在冲击作用下的裂纹扩展规律。研究结果表明:由于阶梯面的存在,球齿在冲击作用下对阶梯型井底造成的预损伤区域比常规井底更大,冲击位置靠近阶梯面的裂纹扩展效果更好;双球齿冲击阶梯井底容易形成较大范围的岩石破碎区,降低了破碎阶梯井底地层岩石的难度;球齿冲击过程中对青砂岩造成的预损伤区域比花岗岩大,在冲击能量相同的情况下球齿冲击破碎花岗岩更为困难。利用冲旋步进钻井方法理论上可以进一步提高难钻地层钻井速度,但具体效果需要经现场试验及优化。所得结论可为深部难钻地层钻井速度的提升提供新的思路。 展开更多
关键词 冲旋步进钻井方法 阶梯井底 差压步进钻头 有限-离散元耦合 裂纹扩展
下载PDF
大变幅加卸载下特厚煤层底板断层突水机理模拟研究
6
作者 李浩 朱开鹏 +2 位作者 郭国强 周杨 康志勤 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第5期118-128,共11页
特厚煤层采场空间大、扰动范围广,强烈大变幅荷载易导致底板断层破裂加剧并诱发水害。数值模拟是揭示特厚煤层底板断层活化与突水机理的重要方法,准确反映大变幅加卸载下岩体破裂与裂隙水耦合特征是其合理性的关键。构建损伤变量与塑性... 特厚煤层采场空间大、扰动范围广,强烈大变幅荷载易导致底板断层破裂加剧并诱发水害。数值模拟是揭示特厚煤层底板断层活化与突水机理的重要方法,准确反映大变幅加卸载下岩体破裂与裂隙水耦合特征是其合理性的关键。构建损伤变量与塑性应变、应力之间的相关关系,得到完整岩块的拉、加压卸载损伤演化方程;以平方拉剪应力与Benzeggagh-Kenane为初始、完全断裂准则,建立塑性位移与强度劣化关系,建立加卸载韧性断裂本构关系;基于实验数据建立贯通裂隙加卸载剪切本构关系。以基本方程与状态方程为基础,结合浸没边界方法,形成裂隙岩体水力学模拟理论。由此编制流体动力学-有限离散元CFD-FDEM耦合程序,模拟研究特厚煤层底板断层活化突水过程。结果表明:CFD-FDEM耦合程序可数值实现特厚煤层底板断层从(准)连续体到离散体转化,以及断层带裂隙水运移过程。底板断层采动破坏包络线呈W形,最深位于断层及其上盘(48.6m),最浅位于断层下盘(23m)。特厚煤层采场底板断层及其上盘受到较大超前集中应力,而后在采空区内大幅卸载,导致该位置出现显著二次破坏,并形成主要导水通道。研究成果为特厚煤层工作面底板断层水害防治提供理论支撑。 展开更多
关键词 特厚煤层 底板断层 突水机理 CFD-fdem耦合 大变幅加卸载
下载PDF
Anisotropic shearing mechanism of Kangding slate:Experimental investigation and numerical analysis
7
作者 Ping Liu Quansheng Liu +4 位作者 Penghai Deng Yucong Pan Yiming Lei Chenglei Du Xianqi Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1487-1504,共18页
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ... The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm. 展开更多
关键词 ANISOTROPY Empirical expression of cohesion foliation angles Combined finite-discrete element method(fdem) Shear rate element size
下载PDF
Assessing fracturing mechanisms and evolution of excavation damaged zone of tunnels in interlocked rock masses at high stresses using a finitediscrete element approach 被引量:10
8
作者 I.Vazaios N.Vlachopoulos M.S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期701-722,共22页
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex... Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation. 展开更多
关键词 EXCAVATION damaged zone (EDZ) BRITTLE failure finite-discrete element method (fdem) TUNNELLING DISCRETE fracture network (DFN)
下载PDF
Fracture development around deep underground excavations: Insights from FDEM modelling 被引量:23
9
作者 Andrea Lisjak Daniel Figi Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期493-505,共13页
Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage deve... Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage development around underground excavations represents a key issue in several rock engineeringapplications, including tunnelling, mining, drilling, hydroelectric power generation, and the deepgeological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finitediscreteelement method (FDEM) code to simulate the fracturing mechanisms associated with theexcavation of underground openings in brittle rock formations. A brief review of the current state-of-theartmodelling approaches is initially provided, including the description of selecting continuum- anddiscontinuum-based techniques. Then, the influence of a number of factors, including mechanical and insitu stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for threedifferent geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropicrock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy onthe development of an excavation damaged zone (EDZ) around a tunnel excavated in a layered rockformation is considered. Finally, the interaction mechanisms between two large caverns of an undergroundhydroelectric power station are investigated, with particular emphasis on the rock mass responsesensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEMsimulations can provide unique geomechanical insights in cases where an explicit consideration offracture and fragmentation processes is of paramount importance. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Tunnelling Caverns Rock fracturing Excavation damaged zone(EDZ) Hybrid finite-discrete element method(fdem) Numerical modelling
下载PDF
New approaches to quantify progressive damage and associated dynamic rock mass blockiness
10
作者 Ladan Karimi Sharif Davide Elmo Doug Stead 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期285-295,共11页
In the past decade, numerical modelling has been increasingly used for simulating the mechanical behaviour of naturally fractured rock masses. In this paper, we introduce new algorithms for spatial and temporal analys... In the past decade, numerical modelling has been increasingly used for simulating the mechanical behaviour of naturally fractured rock masses. In this paper, we introduce new algorithms for spatial and temporal analyses of newly generated fractures and blocks using an integrated discrete fracture network (DFN)-finite-discrete element method (FDEM) (DFN-FDEM) modelling approach. A fracture line calculator and analysis technique (i.e. discrete element method (DEM) fracture analysis, DEMFA) calculates the geometrical aspects of induced fractures using a dilation criterion. The resultant two-dimensional (2D) blocks are then identified and characterised using a graph structure. Block tracking trees allow track of newly generated blocks across timesteps and to analyse progressive breakage of these blocks into smaller blocks. Fracture statistics (number and total length of initial and induced fractures) are then related to the block forming processes to investigate damage evolution. The combination of various proposed methodologies together across various stages of modelling processes provides new insights to investigate the dependency of structure's resistance on the initial fracture configuration. 展开更多
关键词 Numerical modelling Spatial analysis Temporal analysis Discrete fracture network(DFN) finite-discrete element method(fdem)modelling Block calculations Graph structure
下载PDF
A review of discrete modeling techniques for fracturing processes in discontinuous rock masses 被引量:60
11
作者 A.Lisjak G.Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期301-314,共14页
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur... The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations. 展开更多
关键词 Rock fracturing Numerical modeling Discrete element method (DEM)finite-discrete element method fdem
下载PDF
基于有限元/离散元耦合的大理石高速划擦过程仿真 被引量:2
12
作者 刘舒颖 王福增 +1 位作者 郭子宇 尹方辰 《金刚石与磨料磨具工程》 CAS 北大核心 2019年第1期95-100,共6页
针对大理石的磨粒加工过程,借助有限元/离散元耦合方法建立了单颗磨粒的高速划擦仿真模型,并通过在实体单元中插入零厚度内聚力单元,控制内聚力单元的失效来实现大理石加工过程中裂纹的萌生及扩展过程。基于所建立的单颗磨粒划擦模型,... 针对大理石的磨粒加工过程,借助有限元/离散元耦合方法建立了单颗磨粒的高速划擦仿真模型,并通过在实体单元中插入零厚度内聚力单元,控制内聚力单元的失效来实现大理石加工过程中裂纹的萌生及扩展过程。基于所建立的单颗磨粒划擦模型,对比了划擦深度和划擦速度对大理石去除过程的影响。结果表明:大理石划擦过程中划擦力和加工表面损伤层厚度随划擦速度和划擦深度的增加而显著增大,且划擦力与损伤层厚度存在正相关性。 展开更多
关键词 大理石划擦 有限元/离散元耦合 内聚力单元 ABAQUS建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部