期刊文献+
共找到1,655篇文章
< 1 2 83 >
每页显示 20 50 100
Effect of Different Laser Energy Nitriding on the Fretting Wear Performance of Zr Alloy
1
作者 NING Chuangming TANG Guocan +4 位作者 YU Shijia ZHOU Junbo REN Quanyao ZENG Bing CAI Zhenbing 《摩擦学学报(中英文)》 EI CAS CSCD 北大核心 2024年第9期1306-1321,共16页
The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear rea... The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear reactors,Zr alloy fuel cladding is subjected to extreme harsh environments,such as high temperature,high pressure and high flow rate for a long period of time.The wear and corrosion resistance of Zr alloys is important for the safe operation of nuclear reactors.Surface modification can effectively improve the corrosion and wear resistance of fuel cladding.Compared with coating technology,nitriding technology does not have problems for bonding between the coating and the substrate.Current research on surface nitriding of Zr alloys mainly focuses on plasma nitriding and ion implantation techniques.Research on laser nitriding of Zr alloy surfaces and their fretting wear characteristics is scarce.In this study,the surface of Zr alloy was treated with laser nitriding at different laser energies.The microstructure of Zr alloy treated with different laser energies and its fretting wear performance were studied.The results showed that after nitriding with different laser energies,the surface of the Zr alloy showed a typical molten state after melting,vaporizing and cooling under the thermal effect of the laser,and this state was more obvious with the increase of the laser energy.At the same time,doping of N atoms and formation of the ZrN phase led to different cooling rates in the molten zone that produced large tensile stresses after cooling.This led to cracks on the surface of Zr alloys after laser nitriding at different energies,and the crack density increased with increasing laser energy.This also led to an increase in the surface roughness of the Zr alloy with increasing laser energy after laser nitriding treatment.Due to the presence of water in the industrial nitrogen,nitrides were generated on the surface of the sample along with some oxides.When the laser energy was 100 mJ,there was no ZrN generation,and N existed mainly as a diffusion layer within the Zr alloy substrate.ZrN generated when the laser energy reached 200 mJ and above,which increased with the increase of laser energy.Due to the generation of ZrN phase and the presence of some oxides,the surface Vickers hardness of Zr alloys after laser nitriding treatment at different energies increased by 37.5%compared to Zr alloys.After laser nitriding treatment,the wear mechanism of Zr alloys changed.For the untreated Zr alloys,the wear mechanism was dominated by delamination and spalling wear,accompanied by oxidative and abrasive wear.The phenomenon of delamination and peeling decreased with the increase of laser energy.Wear mechanisms changed to predominantly abrasive wear with oxidative wear and delamination spalling.The wear volume of sample nitriding with laser energy 400 mJ was reduced by 46.5%compared with that of untreated Zr alloy. 展开更多
关键词 zirconium alloy fretting wear laser nitriding DELAMINATION laser energy
下载PDF
Fretting-corrosion mechanisms of Ti6Al4V against CoCrMo in simulated body fluid under various fretting states
2
作者 Jian PU Zupei ZHANG +7 位作者 Yali ZHANG Xiaogang ZHANG Xinlu YUAN Xiaoyu ZHANG Guoxian ZHANG Wen CUI Shu YANG Zhongmin JIN 《Friction》 SCIE EI CAS CSCD 2024年第12期2741-2759,共19页
Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work st... Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work studied the fretting corrosion of Ti6Al4V‒CoCrMo pair in calf serum solution.We established this material pair’s running condition fretting map(RCFM)regarding load and displacement,and revealed the damage mechanism of this material pair in various fretting regimes,namely partial slip regime(PSR),mixed fretting regime(MFR),and gross slip regime(GSR).The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion.Adhesive wear(material transfer)also existed in MFR.The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR,while no apparent damage in PSR.Furthermore,a dense composite material layer with high hardness was formed in the middle contacting area in GSR,which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys.Finally,the ion concentration maps for Ti and Co ions were constructed,which displayed the transition in the amount of released Ti and Co ions under different displacements and loads. 展开更多
关键词 fretting corrosion Ti6Al4V alloy CoCrMo alloy composite material layer damage mechanism metal ion release
原文传递
Fretting Wear Characteristics of Nuclear Fuel Cladding in High-Temperature Pressurized Water 被引量:3
3
作者 Jun Wang Haojie Li +4 位作者 Zhengyang Li Yujie Lei Quanyao Ren Yongjun Jiao Zhenbing Cai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期326-338,共13页
In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was develope... In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment.It can simulate the fretting wear experiment of PWR under different temperatures(maximum temperature is 350℃),displacement amplitude,vibration frequency,and normal force.The fretting wear behavior of Zr-4 alloy under different temperature environments was tested.In addition,the evolution of wear scar morphology,profile,and wear volume was studied using an optical microscope(OM),scanning electron microscopy(SEM),and a 3D white light interferometer.Results show that higher water temperature evidently decreased the cladding wear volume,the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth. 展开更多
关键词 fretting wear CLADDING High temperature and high pressure Zirconium alloy
下载PDF
Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects
4
作者 Ying Wang Zheng Yan Yangyang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1339-1370,共32页
In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was... In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges. 展开更多
关键词 fretting fatigue multiaxial fatigue electrochemical corrosion damage evolution life prediction
下载PDF
Fretting wear and friction oxidation behavior of 0Cr20Ni32AlTi alloy at high temperature 被引量:6
5
作者 张晓宇 任平弟 +2 位作者 钟发春 朱旻昊 周仲荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期825-830,共6页
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ... The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated. 展开更多
关键词 high temperature nickel chrome-iron alloy fretting wear friction oxidation activation energy
下载PDF
Effect of nitrogen ion implantation dose on torsional fretting wear behavior of titanium and its alloy 被引量:4
6
作者 李正阳 蔡振兵 +1 位作者 吴艳萍 朱旻昊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期324-335,共12页
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and tre... Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers. 展开更多
关键词 titanium alloy ion implantation fretting wear mechanism
下载PDF
Dual motion fretting wear behaviors of titanium and its alloy in artificial saliva 被引量:1
7
作者 张保荣 蔡振兵 +2 位作者 甘雪琦 朱旻昊 于海洋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期100-107,共8页
A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial sa... A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination. 展开更多
关键词 titanium alloy fretting wear dual motion fretting tangential fretting radial fretting wear mechanism
下载PDF
Fretting wear behavior of Inconel 690 in hydrazine environments 被引量:2
8
作者 张晓宇 任平弟 +1 位作者 彭金方 朱旻昊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期360-367,共8页
The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of ... The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms. 展开更多
关键词 fretting wear steam generator delamination wear
下载PDF
Indirect tension test of epoxy asphalt mixtureusing microstructural finite-element model 被引量:8
9
作者 王江洋 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期65-69,共5页
A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di... A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior. 展开更多
关键词 MICROSTRUCTURE epoxy asphalt mixture image techniques finite-element model indirect tension test
下载PDF
Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations 被引量:3
10
作者 赵建国 史瑞其 《Applied Geophysics》 SCIE CSCD 2013年第3期323-336,359,共15页
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme... The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media. 展开更多
关键词 Absorbing boundary condition elastic wave equation perfectly matched layer finite-element modeling
下载PDF
基于FRET构建A型肉毒毒素活性检测的高通量方法 被引量:1
11
作者 罗森 郭丽娜 +2 位作者 李涛 王琴 王慧 《安徽医科大学学报》 CAS 北大核心 2023年第1期15-21,共7页
目的利用荧光共振能量转移(FRET)构建针对A型肉毒毒素酶活性检测的高通量体外方法。方法构建只识别A型肉毒毒素的基于双荧光标记底物的重组表达质粒,将其构建的质粒转入大肠杆菌表达系统进行表达,对表达后的荧光标记底物重组蛋白进行纯... 目的利用荧光共振能量转移(FRET)构建针对A型肉毒毒素酶活性检测的高通量体外方法。方法构建只识别A型肉毒毒素的基于双荧光标记底物的重组表达质粒,将其构建的质粒转入大肠杆菌表达系统进行表达,对表达后的荧光标记底物重组蛋白进行纯化和透析并保存备用;利用A型肉毒毒素轻链(ALc)对重组蛋白进行酶切检测活性;对本检测方法的条件进行优化;ALc切割荧光标记底物测定其酶动力学参数K_(m)与K_(cat)值。结果重组表达质粒构建成功,通过大肠杆菌表达系统表达后检测明显出现目的条带,对其纯化后获得的重组蛋白纯度在90%左右,命名重组蛋白为CYA。对CYA通过酶ALc、B型肉毒毒素轻链(BLc)进行酶切鉴定,结果显示CYA只能被ALc酶切产生与预期相符的两个蛋白片段,不能被BLc酶切。对基于FRET底物的条件优化得到:设定滤光片灵敏度在65~110之间;实时动态检测间隔为2 min/次,动态检测时间为30~120 min,底物CYA合适的浓度范围0.5~32μmol/L。CYA在ALc酶作用下随时时间的变化与荧光值528与485的比值作图最小在0.5左右,最大时约为0.9。酶动力学参数测定ALc切割CYA的值K_(cat)值为(5±0.4)s^(-1)和K_(m)为(2.33±0.21)μmol/L。结论成功构建了基于FRET技术的A型肉毒毒素活性检测的高通量体外分析方法。 展开更多
关键词 fret 肉毒毒素 高通量检测
下载PDF
2.5D induced polarization forward modeling using the adaptive finite-element method
12
作者 叶益信 李予国 +1 位作者 邓居智 李泽林 《Applied Geophysics》 SCIE CSCD 2014年第4期500-507,511,共9页
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such... The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models. 展开更多
关键词 Induced polarization(IP) dual error estimate weighting unstructured mesh ADAPTIVE finite-element(FE)
下载PDF
基于FRET成像探究棕榈酰化修饰调节Fyn激酶活性 被引量:1
13
作者 张鑫 郭佳 +2 位作者 姚辉 邓林红 欧阳明星 《医用生物力学》 CAS CSCD 北大核心 2023年第2期228-235,共8页
目的探讨棕榈酰化修饰调节非受体酪氨酸激酶Fyn活性的分子机制。方法利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术实时检测细胞中的Fyn活性,并结合棕榈酰化位点缺失和共转染蛋白质酪氨酸激酶(C-terminal Src... 目的探讨棕榈酰化修饰调节非受体酪氨酸激酶Fyn活性的分子机制。方法利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术实时检测细胞中的Fyn活性,并结合棕榈酰化位点缺失和共转染蛋白质酪氨酸激酶(C-terminal Src kinase,CSK)表达质粒研究其分子机制。结果实验发现,(C3,C6)任一位点的棕榈酰化缺失能引起Fyn的高活性表达,且C6位点影响更显著。已知CSK激活后发生膜转移,FRET检测证实其对细胞中的Fyn活性有下调作用,但不能有效调控(C3,C6)棕榈酰化位点缺失的Fyn(GSS)活性。结论本文结果初步支持了Fyn活性受细胞内的物理空间定位分布的一种调控机制假设,即棕榈酰化缺失的Fyn(GSS)受细胞膜上CSK抑制性的调节作用被减弱,从而促进了组成性的高活性表达。 展开更多
关键词 Fyn激酶 棕榈酰化修饰 荧光共振能量转移 CSK激酶
下载PDF
Three-dimensional magnetotellurics modeling using edgebased finite-element unstructured meshes 被引量:8
14
作者 刘长生 任政勇 +1 位作者 汤井田 严艳 《Applied Geophysics》 SCIE CSCD 2008年第3期170-180,共11页
Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficien... Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies. 展开更多
关键词 Magnetotelluric modeling edge-based finite-element unstructured mesh local mesh refinement
下载PDF
Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions 被引量:5
15
作者 Zhen-Bing Cai Jin-Fang Peng +2 位作者 Hao Qian Li-Chen Tang Min-Hao Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期819-828,共10页
The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on ... The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments. 展开更多
关键词 Impact fretting wear Alloy 690 Oxidativewear CRACK Fracture appearance
下载PDF
Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature 被引量:6
16
作者 ZHANG Xiaohua LIU Daoxin 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期266-271,共6页
An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented.... An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350°C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350°C. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening. 展开更多
关键词 titanium alloys fretting fatigue elevated temperature shot peening ion beam enhanced deposition
下载PDF
Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment 被引量:3
17
作者 LUO Jun ZHENG Jianfeng PENG Jinfang HE Liping ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期288-296,共9页
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ... The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear. 展开更多
关键词 fretting wear fretting regimes low temperature gas multi-component thermo-chemical treatment(LTGMTT) modified layer medium carbon steel
下载PDF
Fretting wear of micro-arc oxidation coating prepared on Ti6Al4V alloy 被引量:3
18
作者 林修洲 朱旻昊 +2 位作者 郑健峰 罗军 莫继良 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期537-546,共10页
Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrome... Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear. 展开更多
关键词 TITANIUM ALLOY micro-arc OXIDATION FRICTION and WEAR fretting WEAR
下载PDF
EXPERIMENTAL STUDY OF FRETTING WEAR OF TITANIUM ALLOY BEFORE AND AFTER LASER BEAM QUENCHING 被引量:4
19
作者 Dai Zhendong, Tang Yaxing, Zhang Hong, Wang Min (Department of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China) Yang Shenrong, Zhang Xueshou (Laboratory of Solid Lubrication, Lanzhou Institu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期48-53,共6页
The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without... The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude. 展开更多
关键词 fretting wear laser beams quenching (cooling) titanium alloys
下载PDF
Friction and wear of 7075 aluminum alloy induced by torsional fretting 被引量:6
20
作者 蔡振兵 朱旻昊 林修洲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期371-376,共6页
The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechani... The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechanism of 7075 aluminum alloy under different angular displacement amplitudes were investigated in detail.The results show that the torsional fretting running behaviors of 7075 aluminum alloy can be defined by three fretting regimes(i.e.partial slip regime(PSR),mixed fretting regime(MFR) and slip regime(SR)) with the increase of angular displacement amplitudes.In PSR,the damage occurs at the lateral portion of the contact zone with a slight annular shape.However,in MFR and SR,more severe damages are observed and the debris layer covers the wear scars.Friction torque and dissipation energy which are strongly dependent upon the imposed angular displacement amplitudes and presented in three stages were discussed in detail.The mechanisms of torsional fretting wear of aluminum alloy are mainly oxidative wear,abrasive wear and delamination in the three fretting regimes.In addition,the oxidative debris plays an important role during the torsional fretting wear processes. 展开更多
关键词 7075 aluminum alloy fretting wear torsional fretting fretting regime
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部