期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Integrated guidance and control design method based on finite-time state observer 被引量:1
1
作者 MA Ping ZHANG Denghui +1 位作者 WANG Songyan CHAO Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1251-1262,共12页
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight... A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty. 展开更多
关键词 integrated guidance and control(IGC) finite-time state observer(FTSO) back-to-turn(BTT) vehicle composited control
下载PDF
Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer 被引量:11
2
作者 Wenqiang ZHANG Chaoyang DONG +1 位作者 Maopeng RAN Yang LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第11期2907-2920,共14页
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ... This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework. 展开更多
关键词 Directed interaction topology Distributed control Disturbance rejection finite-time convergent extended state observer(FTCESO) Formation tracking control Multi-agent systems
原文传递
Extended state observer-based finite-time adaptive sliding mode control for wheeled mobile robot 被引量:1
3
作者 Brahim Moudoud Hicham Aissaoui Mohammed Diany 《Journal of Control and Decision》 EI 2022年第4期465-476,共12页
In this paper,an Improved Extended State Observer-based Finite-Time adaptive sliding mode control,is investigated for trajectory tracking control of a wheeled mobile robot.First,a novel finite-time adaptive sliding mo... In this paper,an Improved Extended State Observer-based Finite-Time adaptive sliding mode control,is investigated for trajectory tracking control of a wheeled mobile robot.First,a novel finite-time adaptive sliding mode control,based on the fractional power of the sliding surface,is developed to deal with the chattering problem.Moreover,this strategy improves the conver-gence rate by adjusting online the switching part in sliding mode control.Second,an improved Non-linear ESO is employed to reconstruct and compensate for the unknown disturbances.To complete the trajectory tracking control,the kinematic algorithm is in troduced.Theoretically,the proposed control scheme converges within finite-time thanks to the Lyapunov method.Finally,numerical simulations show the efficiency of the designed controller. 展开更多
关键词 finite-time adaptive control non-linear extended state observer adaptive sliding mode control Lyapunov theory
原文传递
Robust Finite-Time Trajectory Tracking Control of Wheeled Mobile Robots with Parametric Uncertainties and Disturbances 被引量:6
4
作者 GUO Yijun YU Li XU Jianming 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第5期1358-1374,共17页
In this paper, a robust finite-time tracking control scheme is proposed for wheeled mobile robots with parametric uncertainties and disturbances. To eliminate the effect of lumped uncertainties,a nonlinear extended st... In this paper, a robust finite-time tracking control scheme is proposed for wheeled mobile robots with parametric uncertainties and disturbances. To eliminate the effect of lumped uncertainties,a nonlinear extended state observer(NESO) is employed to estimate the unknown states as well as uncertainties, and the corresponding coefficients are tuned via pole placement technique. Based on the observation values, the finite-time sliding mode controller is presented to guarantee that both the sliding mode variables and tracking errors converge to zero within finite time. Simulation results are given to demonstrate the effectiveness of the proposed control method. 展开更多
关键词 finite-time SLIDING mode control nonlinear EXTENDED state observer TRAJECTORY tracking WHEELED mobile robot
原文传递
Robust fault-tolerant control for quadrotor UAVs with parameter uncertainties and actuator faults
5
作者 Hao Liu Yuying Guo +1 位作者 Youmin Zhang Bin Jiang 《Control Theory and Technology》 EI CSCD 2024年第4期581-595,共15页
In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the ... In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations. 展开更多
关键词 Actuator fault Model uncertainty Adaptive finite-time extended state observer(AFTESO) Fault-tolerant control Robust control Quadrotor UAV
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部