In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilize...In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.展开更多
This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoecono...This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoeconomic analysis of a novel combined power,freshwater and cooling multi-generation system is performed in this study.The exergoeconomic analysis model is established by exergy flow theory.A comprehensive exergy,exergoeconomic and environmental analysis is carried out.Five critical decision variables are researched to bring out effects on the multi-generation system exergoeconomic performance.A novel fast optimization method combining genetic algorithm and Bagging neural network is proposed.The advanced nature comparison is made between the proposed system and four similar cases.Results display that increasing the turbine inlet temperature can improve exergy efficiency and decrease the total product unit cost.The multi-generation system exergy destruction directly determines exergy efficiency and total exergy destruction cost rate.The total product unit cost in the cost optimal design case is reduced by 7.7%and 25%,respectively,compared with exergy efficiency optimal design case and basic design case.Compared with four similar cases,the proposed multi-generation system has great advantages in thermodynamic performance and exergoeconomic performance.This paper can provide research methods and ideas for performance analysis and fast optimization of multi-generation system.展开更多
Syngas fuel generated by solar energy integrating with fuel cell technology is one of the promising methods for future green energy solutions to carbon neutrality.This paper designs a novel solar-driven solid oxide el...Syngas fuel generated by solar energy integrating with fuel cell technology is one of the promising methods for future green energy solutions to carbon neutrality.This paper designs a novel solar-driven solid oxide electrolyzer system integrated with waste heat for syngas production.Solar photovoltaic and parabolic trough collecter together drive the solid oxide electrolysis cell to improve system efficiency.The thermodynamic models of components are established,and the energy,exergy,and exergoeconomic analysis are conducted to evaluate the system’s performance.Under the design work conditions,the solar photovoltaic accounts for 88.46%of total exergy destruction caused by its less conversion efficiency.The exergoeconomic analysis indicates that the fuel cell component has a high exergoeconomic factor of 89.56%due to the large capital investment cost.The impacts of key parameters such as current density,operating temperature,pressure and mole fraction on system performances are discussed.The results demonstrate that the optimal energy and exergy efficiencies are achieved at 19.04%and 19.90%when the temperature,pressure,and molar fraction of H_(2)O are 1223.15 K,0.1 MPa,and 50%,respectively.展开更多
基金supported by National Natural Science Foundation of China (No.60504007)the PhD Programs Foundation of Ministry of Educationof China (No.20070286040)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.
基金financial support from the Jilin provincial Development and Reform Commission(No.2023C032-7)Science Foundation of Jilin province Science and Technology Agency(No.20210203057SF)Science and Technology Development Program of Jilin province Science and Technology Agency(No.20230101211JC)。
文摘This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoeconomic analysis of a novel combined power,freshwater and cooling multi-generation system is performed in this study.The exergoeconomic analysis model is established by exergy flow theory.A comprehensive exergy,exergoeconomic and environmental analysis is carried out.Five critical decision variables are researched to bring out effects on the multi-generation system exergoeconomic performance.A novel fast optimization method combining genetic algorithm and Bagging neural network is proposed.The advanced nature comparison is made between the proposed system and four similar cases.Results display that increasing the turbine inlet temperature can improve exergy efficiency and decrease the total product unit cost.The multi-generation system exergy destruction directly determines exergy efficiency and total exergy destruction cost rate.The total product unit cost in the cost optimal design case is reduced by 7.7%and 25%,respectively,compared with exergy efficiency optimal design case and basic design case.Compared with four similar cases,the proposed multi-generation system has great advantages in thermodynamic performance and exergoeconomic performance.This paper can provide research methods and ideas for performance analysis and fast optimization of multi-generation system.
基金supported by the National Natural Science Foundation of China(No.52276007)the Major Program of the National Natural Science Foundation of China(No.52090064)。
文摘Syngas fuel generated by solar energy integrating with fuel cell technology is one of the promising methods for future green energy solutions to carbon neutrality.This paper designs a novel solar-driven solid oxide electrolyzer system integrated with waste heat for syngas production.Solar photovoltaic and parabolic trough collecter together drive the solid oxide electrolysis cell to improve system efficiency.The thermodynamic models of components are established,and the energy,exergy,and exergoeconomic analysis are conducted to evaluate the system’s performance.Under the design work conditions,the solar photovoltaic accounts for 88.46%of total exergy destruction caused by its less conversion efficiency.The exergoeconomic analysis indicates that the fuel cell component has a high exergoeconomic factor of 89.56%due to the large capital investment cost.The impacts of key parameters such as current density,operating temperature,pressure and mole fraction on system performances are discussed.The results demonstrate that the optimal energy and exergy efficiencies are achieved at 19.04%and 19.90%when the temperature,pressure,and molar fraction of H_(2)O are 1223.15 K,0.1 MPa,and 50%,respectively.