The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie...In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
Innovation scholars highlight the economic benefits to firms,while research findings on the relationship between innovation output and economic returns remain mixed.In this study,we develop the profiting from innovati...Innovation scholars highlight the economic benefits to firms,while research findings on the relationship between innovation output and economic returns remain mixed.In this study,we develop the profiting from innovation(PFI)framework and address the crucial role of financial constraints in the relationship between innovation output and financial performance.We argue that the liability of newness differentiates firms’financial performance during the commercialization of innovation,leading to a U-shaped relationship between firms’innovation output and financial performance.We further document the moderating impact of individual financial constraints(IFC)and market-based financial constraints(MFC)on this curvilinear relationship.Empirical tests based on the 142,972 firm-year observations of the multi-source dataset of Chinese manufacturing firms from 1999–2009 support our hypotheses.The additional analysis shows that non-state-owned enterprises and small and medium enterprises benefit more from the synergistic effect of reductions of IFC and MFC than state-owned enterprises and large firms.Our study enriches the literature of the PFI framework by uncovering the mechanism between innovation output and economic returns where financial constraints play an essential role.To the best of our knowledge,we are among the first to investigate the processes and mechanisms between innovation output and financial performance,generating novel insights for business practitioners and policymakers.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances...In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.展开更多
A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitabl...A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitable condition with the initial output tracking error, the proposed controllers guarantee the output tracking error within a symmtric or an asymmetric pre-specified limit range, and boundedness of all signals of the closed loop system. A transformation is inmxuced to take care of the output tracking error constraint. Smooth and/or p -times differentiable step functions are propsed and incor- porated in the output tracking error transformation to overcome difficulties due to the asynxnetric limit range on the output tracking error. As a result, there are no switchings in the proposed controllers despite of the asymmnetric limit range.展开更多
In remote areas far from the grid, wind/PV/storage generating system is relatively a good choice, whatever in resource configuration, performance or prices. For the independent hybrid power system, the output models o...In remote areas far from the grid, wind/PV/storage generating system is relatively a good choice, whatever in resource configuration, performance or prices. For the independent hybrid power system, the output models of wind turbines, photovoltaic arrays and batteries are built in this paper, and based on the objectives of the capacity configuration optimal model, constraints used in the process of capacity configuration are analyzed. These provide convenient conditions and theoretical basis for the optimal capacity configuration of independent wind/PV/storage system.展开更多
The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power...The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.展开更多
This article investigates the event-triggered adaptive neural network(NN)tracking control problem with deferred asymmetric time-varying(DATV)output constraints.To deal with the DATV output constraints,an asymmetric ti...This article investigates the event-triggered adaptive neural network(NN)tracking control problem with deferred asymmetric time-varying(DATV)output constraints.To deal with the DATV output constraints,an asymmetric time-varying barrier Lyapunov function(ATBLF)is first built to make the stability analysis and the controller construction simpler.Second,an event-triggered adaptive NN tracking controller is constructed by incorporating an error-shifting function,which ensures that the tracking error converges to an arbitrarily small neighborhood of the origin within a predetermined settling time,consequently optimizing the utilization of network resources.It is theoretically proven that all signals in the closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),while the initial value is outside the constraint boundary.Finally,a single-link robotic arm(SLRA)application example is employed to verify the viability of the acquired control algorithm.展开更多
This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and ho...This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and holonomic constraints, respectively. Then finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
In this study,the finite-time formation control of multi-agent systems with region constraints is studied.Multiple agents have first-order dynamics and a common target area.A novel control algorithm is proposed using ...In this study,the finite-time formation control of multi-agent systems with region constraints is studied.Multiple agents have first-order dynamics and a common target area.A novel control algorithm is proposed using local information and interaction.If the communication graph is undirected and connected and the desired framework is rigid,it is proved that the controller can be used to solve the formation problem with a target area.That is,all agents can enter the desired region in finite time while reaching and maintaining the desired formation shapes.Finally,a numerical example is given to illustrate the results.展开更多
This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angl...This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.展开更多
This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from be...This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from being violated,a tan-type nonlinear mapping is established to transform the considered system into an equivalent“non-constrained”system.By employing a smooth switch function in the virtual control signals,the singularity in the traditional finite-time dynamic surface control can be avoided.Fuzzy logic systems are used to compensate for the unknown functions.A suitable event-triggering rule is introduced to determine when to transmit the control laws.Through Lyapunov analysis,the closed-loop system is proved to be semi-globally practical finite-time stable,and the state constraints are never violated.Simulations are provided to evaluate the effectiveness of the proposed approach.展开更多
A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DG...A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China(61803085,61806052,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20180361)
文摘In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
基金supported by the National Natural Science Foundation of China(Nos.72104027,71772142,U1404703)National Social Science Foundation of China(No.18AGL005)+2 种基金National Postdoctoral Science Foundation of China(No.2021M690388)Social Science Innovation Team of Henan Province(No.2022CXTD03)Key Research Project of Beijing Institute of Technology(No.2021CX13003).
文摘Innovation scholars highlight the economic benefits to firms,while research findings on the relationship between innovation output and economic returns remain mixed.In this study,we develop the profiting from innovation(PFI)framework and address the crucial role of financial constraints in the relationship between innovation output and financial performance.We argue that the liability of newness differentiates firms’financial performance during the commercialization of innovation,leading to a U-shaped relationship between firms’innovation output and financial performance.We further document the moderating impact of individual financial constraints(IFC)and market-based financial constraints(MFC)on this curvilinear relationship.Empirical tests based on the 142,972 firm-year observations of the multi-source dataset of Chinese manufacturing firms from 1999–2009 support our hypotheses.The additional analysis shows that non-state-owned enterprises and small and medium enterprises benefit more from the synergistic effect of reductions of IFC and MFC than state-owned enterprises and large firms.Our study enriches the literature of the PFI framework by uncovering the mechanism between innovation output and economic returns where financial constraints play an essential role.To the best of our knowledge,we are among the first to investigate the processes and mechanisms between innovation output and financial performance,generating novel insights for business practitioners and policymakers.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金supported by the National Natural Science Foundation of China(61725303,91848205)。
文摘In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.
文摘A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitable condition with the initial output tracking error, the proposed controllers guarantee the output tracking error within a symmtric or an asymmetric pre-specified limit range, and boundedness of all signals of the closed loop system. A transformation is inmxuced to take care of the output tracking error constraint. Smooth and/or p -times differentiable step functions are propsed and incor- porated in the output tracking error transformation to overcome difficulties due to the asynxnetric limit range on the output tracking error. As a result, there are no switchings in the proposed controllers despite of the asymmnetric limit range.
文摘In remote areas far from the grid, wind/PV/storage generating system is relatively a good choice, whatever in resource configuration, performance or prices. For the independent hybrid power system, the output models of wind turbines, photovoltaic arrays and batteries are built in this paper, and based on the objectives of the capacity configuration optimal model, constraints used in the process of capacity configuration are analyzed. These provide convenient conditions and theoretical basis for the optimal capacity configuration of independent wind/PV/storage system.
基金supported by the National Natural Science Foundation of China(616731356140310361603114)
文摘The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.
基金supported by the Natural Science Foundation of Tianjin,China(No.19JCYBJC30700)。
文摘This article investigates the event-triggered adaptive neural network(NN)tracking control problem with deferred asymmetric time-varying(DATV)output constraints.To deal with the DATV output constraints,an asymmetric time-varying barrier Lyapunov function(ATBLF)is first built to make the stability analysis and the controller construction simpler.Second,an event-triggered adaptive NN tracking controller is constructed by incorporating an error-shifting function,which ensures that the tracking error converges to an arbitrarily small neighborhood of the origin within a predetermined settling time,consequently optimizing the utilization of network resources.It is theoretically proven that all signals in the closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),while the initial value is outside the constraint boundary.Finally,a single-link robotic arm(SLRA)application example is employed to verify the viability of the acquired control algorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.61273091and 61573177the Project of Taishan Scholar of Shandong Province
文摘This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and holonomic constraints, respectively. Then finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
基金Project supported by the National Natural Science Foundation of China(Nos.61573199 and 61571441)。
文摘In this study,the finite-time formation control of multi-agent systems with region constraints is studied.Multiple agents have first-order dynamics and a common target area.A novel control algorithm is proposed using local information and interaction.If the communication graph is undirected and connected and the desired framework is rigid,it is proved that the controller can be used to solve the formation problem with a target area.That is,all agents can enter the desired region in finite time while reaching and maintaining the desired formation shapes.Finally,a numerical example is given to illustrate the results.
基金This work was supported by the National Nature Science Foundation of China(11572097).
文摘This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.
基金Project supported by the National Natural Science Foundation of China(Nos.61973204 and 61703275)。
文摘This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from being violated,a tan-type nonlinear mapping is established to transform the considered system into an equivalent“non-constrained”system.By employing a smooth switch function in the virtual control signals,the singularity in the traditional finite-time dynamic surface control can be avoided.Fuzzy logic systems are used to compensate for the unknown functions.A suitable event-triggering rule is introduced to determine when to transmit the control laws.Through Lyapunov analysis,the closed-loop system is proved to be semi-globally practical finite-time stable,and the state constraints are never violated.Simulations are provided to evaluate the effectiveness of the proposed approach.
基金supported in part by the U.S.Office of Naval Research(N00014-16-1-3121,N00014-18-1-2185)the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.