This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural n...The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.展开更多
The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are ...The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networ...In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networks with distributed delays is established in which a set of neural networks are used as individual subsystems. Finite time stability analysis for such neural networks is addressed based on the linear matrix inequality approach. Numerical examples are given to illustrate the usefulness of our proposed method. The results obtained are compared with the results in the literature to show the conservativeness.展开更多
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li...This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.展开更多
Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm...Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficien...How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation o...In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
This paper considers the drive-response synchronization in finite-time and fixed-time of inertial neural networks with time-varying and distributed delays(mixed delays). First, by constructing a proper variable substi...This paper considers the drive-response synchronization in finite-time and fixed-time of inertial neural networks with time-varying and distributed delays(mixed delays). First, by constructing a proper variable substitution, the original inertial neural networks can be rewritten as a first-order differential system. Second, by constructing Lyapunov functions and using differential inequalities,some new and effective criteria are obtained for ensuring the finite-time synchronization. Finally, three numerical examples are also given at the end of this paper to show the effectiveness of the results.展开更多
This article is concerned with the finite-time stabilization(FTSB) of a class of delayed-Hopfield neural networks with a timevarying delay in the leakage term in the presence of parameter uncertainties. To accomplish ...This article is concerned with the finite-time stabilization(FTSB) of a class of delayed-Hopfield neural networks with a timevarying delay in the leakage term in the presence of parameter uncertainties. To accomplish the target of FTSB, two new finitetime controllers are designed for uncertain delayed-Hopfield neural networks with a time-varying delay in the leakage term. By utilizing the finite-time stability theory and the Lyapunov-Krasovskii functional(LKF) approach, some sufficient conditions for the FTSB of these neural networks are established. These conditions, which can be used for the selection of control parameters,are in the form of linear matrix inequalities(LMIs) and can be numerically checked. Additionally, an upper bound of the settling time was estimated. Finally, our theoretical results are further substantiated by two numerical examples with graphical illustrations to demonstrate the effectiveness of the results.展开更多
Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient condi...Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.展开更多
This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler fu...This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.展开更多
The head-related transfer function(HRTF)involves the cues for human auditory localization,which turns it into an essential item of virtual auditory display technology.In practice,the interpolation of HRTF is necessary...The head-related transfer function(HRTF)involves the cues for human auditory localization,which turns it into an essential item of virtual auditory display technology.In practice,the interpolation of HRTF is necessary for the virtual auditory display systems to achieve high spatial resolution.Traditional geometric-based interpolation methods are generally restrained by the spatial distribution of reference on HRTF.When the spatial distribution is sparse,the accuracy of interpolation decreases significantly.Therefore,an interpolation method using the common-pole/zero model and the fitting neural network is proposed.First,we propose a common-pole/zero model to represent HRTFs across multiple subjects,in which the low-dimensional features of the measured HRTFs are extracted.Then,for a new spatial direction,we predict the corresponding low-dimensional HRTF with a fitting neural network.Finally,we reconstruct the high-dimensional HRTF from the predicted low-dimensional HRTF.The simulation results suggest that the proposed method outperforms other interpolation methods such as Linear_AMBC,Bilinear_AMBC,and the Combination method.展开更多
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371049 and 61772063)the Fundamental Research Funds for the Central Universities,China(Grant No.2016JBM070)
文摘The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61703312 and 61703313)。
文摘The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.
文摘In this article, we investigates finite-time H∞ control problem of Markovian jumping neural networks of neutral type with distributed time varying delays. The mathematical model of the Markovian jumping neural networks with distributed delays is established in which a set of neural networks are used as individual subsystems. Finite time stability analysis for such neural networks is addressed based on the linear matrix inequality approach. Numerical examples are given to illustrate the usefulness of our proposed method. The results obtained are compared with the results in the literature to show the conservativeness.
基金National Natural Science Foundation of China under Grants 62203338,61936004,61821003,62173259 and 62176192Postdoctoral Science Foundation of China under Grant 2022M722485.
文摘This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.
基金supported by the National Natural Science Foundation of China(62173352,62103112)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012314)+1 种基金the Open Project of Shenzhen Institute of Artificial Intelligence and Robotics for Society(AC01202005006)the Key-Area Research and Development Program of Guangzhou(202007030004)。
文摘Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
基金supported in part by the National Natural Science Foundation of China under grants 61873304,62173048,62106023in part by the China Postdoctoral Science Foundation Funded Project under grants 2018M641784 and 2019T120240+1 种基金also in part by the Key Science and Technology Projects of Jilin Province,China,under grant 20210201106GXalso in part by the Changchun Science and Technology Project under grant 21ZY41.
文摘How to establish a self‐equilibrium configuration is vital for further kinematics and dynamics analyses of tensegrity mechanism.In this study,for investigating tensegrity form‐finding problems,a concise and efficient dynamic relaxation‐noise tolerant zeroing neural network(DR‐NTZNN)form‐finding algorithm is established through analysing the physical properties of tensegrity structures.In addition,the non‐linear constrained opti-misation problem which transformed from the form‐finding problem is solved by a sequential quadratic programming algorithm.Moreover,the noise may produce in the form‐finding process that includes the round‐off errors which are brought by the approximate matrix and restart point calculating course,disturbance caused by external force and manufacturing error when constructing a tensegrity structure.Hence,for the purpose of suppressing the noise,a noise tolerant zeroing neural network is presented to solve the search direction,which can endow the anti‐noise capability to the form‐finding model and enhance the calculation capability.Besides,the dynamic relaxation method is contributed to seek the nodal coordinates rapidly when the search direction is acquired.The numerical results show the form‐finding model has a huge capability for high‐dimensional free form cable‐strut mechanisms with complicated topology.Eventually,comparing with other existing form‐finding methods,the contrast simulations reveal the excellent anti‐noise performance and calculation capacity of DR‐NTZNN form‐finding algorithm.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
基金This work was supported by the National Science Foundation (ECS-0501451)Army Research Office (W91NF-05-1-0314).
文摘In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
文摘This paper considers the drive-response synchronization in finite-time and fixed-time of inertial neural networks with time-varying and distributed delays(mixed delays). First, by constructing a proper variable substitution, the original inertial neural networks can be rewritten as a first-order differential system. Second, by constructing Lyapunov functions and using differential inequalities,some new and effective criteria are obtained for ensuring the finite-time synchronization. Finally, three numerical examples are also given at the end of this paper to show the effectiveness of the results.
文摘This article is concerned with the finite-time stabilization(FTSB) of a class of delayed-Hopfield neural networks with a timevarying delay in the leakage term in the presence of parameter uncertainties. To accomplish the target of FTSB, two new finitetime controllers are designed for uncertain delayed-Hopfield neural networks with a time-varying delay in the leakage term. By utilizing the finite-time stability theory and the Lyapunov-Krasovskii functional(LKF) approach, some sufficient conditions for the FTSB of these neural networks are established. These conditions, which can be used for the selection of control parameters,are in the form of linear matrix inequalities(LMIs) and can be numerically checked. Additionally, an upper bound of the settling time was estimated. Finally, our theoretical results are further substantiated by two numerical examples with graphical illustrations to demonstrate the effectiveness of the results.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20093401120001the Natural Science Foundation of Anhui Province under Grant No.11040606M12+1 种基金the Natural Science Foundation of Anhui Education Bureau under Grant No.KJ2010A035the 211 Project of Anhui University under Grant No.KJJQ1102
文摘Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Natural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金Supported by National Natural Science Foundation of China under Grant Nos.61673008,11261010,11101126Project of High–Level Innovative Talents of Guizhou Province([2016]5651)+2 种基金Natural Science and Technology Foundation of Guizhou Province(J[2015]2025 and J[2015]2026)125 Special Major Science and Technology of Department of Education of Guizhou Province([2012]011)Natural Science Foundation of the Education Department of Guizhou Province(KY[2015]482)
文摘This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.
基金the National Key R&D Program of China(No.2017YFB1002803)National Nature Science Foundation of China(No.61801334,No.61761044)Basic Research Project of Science and Technology Plan of Shenzhen(JCYJ20170818143246278)。
文摘The head-related transfer function(HRTF)involves the cues for human auditory localization,which turns it into an essential item of virtual auditory display technology.In practice,the interpolation of HRTF is necessary for the virtual auditory display systems to achieve high spatial resolution.Traditional geometric-based interpolation methods are generally restrained by the spatial distribution of reference on HRTF.When the spatial distribution is sparse,the accuracy of interpolation decreases significantly.Therefore,an interpolation method using the common-pole/zero model and the fitting neural network is proposed.First,we propose a common-pole/zero model to represent HRTFs across multiple subjects,in which the low-dimensional features of the measured HRTFs are extracted.Then,for a new spatial direction,we predict the corresponding low-dimensional HRTF with a fitting neural network.Finally,we reconstruct the high-dimensional HRTF from the predicted low-dimensional HRTF.The simulation results suggest that the proposed method outperforms other interpolation methods such as Linear_AMBC,Bilinear_AMBC,and the Combination method.