In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q...In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.展开更多
In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, ...In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, we discuss the construction of an invalid curve based on the faulted divisor. Our attacks are based on the fact that the Hyperelliptic Curve Scalar Multiplication (HECSM) algorithm does not utilize the curve parameters and We consider three hyperelliptic curves as the attack targets. For curve with security level 186 (in bits), our attack method can get the weakest invalid curve with security level 42 (in bits); there are 93 invalid curves with security level less than 50. We also estimate the theoretical probability of getting a weak hyperelliptic curve whose cardinality is a smooth integer. Finally, we show that the complexity of the fault attack is subexponential if the attacker can freely inject a fault in the input divisor. Cryptosystems based on the genus 2 hyperelliptic curves cannot work against our attack algorithm in practice.展开更多
Let Fq be a finite field. In this paper, a construction of Cartesian au-thentication codes from the normal form of a class of nilpotent matrices over the field Fq is presented. Moreover, assume that the encoding rules...Let Fq be a finite field. In this paper, a construction of Cartesian au-thentication codes from the normal form of a class of nilpotent matrices over the field Fq is presented. Moreover, assume that the encoding rules are chosen according to a uniform probability distribution, the probabilities PI and PS, of a successful im-personation attack and of a successful substitution attack respectively, of these codes are also computed.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irre...Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented.First,a signal flow graph(SFG) is used to represent the algorithm for multiplication over GF(2m).Then,the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming,respectively.Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs,To the authors' knowledge,the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials.The proposed low latency designs are regular and modular,and therefore they are suitable for many time critical applications.展开更多
Let F q be a finite field with qelements where q=p~α. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (n+t,n)(F q), singular unitary group U (n+...Let F q be a finite field with qelements where q=p~α. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (n+t,n)(F q), singular unitary group U (n+t,n)(F (q^2)) and singular orthogonal group O (n+t,n)(F q)(n is even) over finite fields F q.展开更多
This paper proves that if qn is large enough, for each element a and primitive element b of Fq, there etists a primitive polynomial of degree n ≥5 over the finite field Fq having a as the coefficient of xn-1 and b as...This paper proves that if qn is large enough, for each element a and primitive element b of Fq, there etists a primitive polynomial of degree n ≥5 over the finite field Fq having a as the coefficient of xn-1 and b as the constant term. This proves that if qn is large enongh, for each element a ∈Fq, there exists a primitive polynomial of degree n ≥ 5 over Fq having a as the coefficient of x.展开更多
In the present paper, we compute the number of the symplectic involaLions over the finite field F with chafF = 2, and also one Cartesian authentication code is obtained.Furthermore, its size parameters are computed co...In the present paper, we compute the number of the symplectic involaLions over the finite field F with chafF = 2, and also one Cartesian authentication code is obtained.Furthermore, its size parameters are computed completely. If assume that the coding rules are chosen according to a uniform probability, PI and Ps denote the largest probabilities of a successful impersonation attack and a successful substitution attack respectively, then PI and Ps are also computed.展开更多
By establishing the connection between graph colouring and the solution of some equation systems in finite fields, we obtain some formulas to the number of solutions of some equation systems in finite fields, in terms...By establishing the connection between graph colouring and the solution of some equation systems in finite fields, we obtain some formulas to the number of solutions of some equation systems in finite fields, in terms of chromatic polynomial of a graph.展开更多
A (t, n)--secret sharing scheme is a method of distribution of information among n participants such that t 〉 1 can reconstruct the secret but (t - 1) cannot. We explore some (k, n)--secret sharing schemes base...A (t, n)--secret sharing scheme is a method of distribution of information among n participants such that t 〉 1 can reconstruct the secret but (t - 1) cannot. We explore some (k, n)--secret sharing schemes based on the finite fields.展开更多
In this paper, we study about trigonometry in finite field, we know that , the field with p elements, where p is a prime number if and only if p = 8k + 1 or p = 8k -1. Let F and K be two fields, we say that F is an ex...In this paper, we study about trigonometry in finite field, we know that , the field with p elements, where p is a prime number if and only if p = 8k + 1 or p = 8k -1. Let F and K be two fields, we say that F is an extension of K, if K⊆F or there exists a monomorphism f: K→F. Recall that , F[x] is the ring of polynomial over F. If (means that F is an extension of K), an element is algebraic over K if there exists such that f(u) = 0 (see [1]-[4]). The algebraic closure of K in F is , which is the set of all algebraic elements in F over K.展开更多
Castex of AS wire is a new technology of near net shape. To study the variation of temperature and velocity of liquid (or semisolid) aluminum during dynamic solidification the numerical simulation was carried out with...Castex of AS wire is a new technology of near net shape. To study the variation of temperature and velocity of liquid (or semisolid) aluminum during dynamic solidification the numerical simulation was carried out with the theory of heat-transfer and hydrodynamics by means of 3-dimensional finite element method. From simulation results, it is found that the variation of temperature and velocityis mainly influenced by the casting temperature of aluminum, rotating speed of Castex wheel and flow of cooling water. Among theseinfluencing factors, the casting temperature distributes most to the length of liquid phase metal. Moreover, the faster the metal solidifies,the higher the metal there moves with the overall trend of descending from the bottom of the wheel to the shoe wall as well as from sidewalls to the center of wheel groove. In comparison with the practical value, the simulation is reliable.展开更多
The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> i...The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> is the Dedekind domain of the integer elements of K. To prove such a result, consider for any prime p, the decomposition into a product of prime ideals of Zk</sub>, of the ideal . From this point, we use on the one hand: 1) The well- known property that says: If , then the ideal pZ<sub>k</sub> decomposes into a product of prime ideals of Zk</sub> as following: . (where:;is the irreducible polynomial of θ, and, is its reduction modulo p, which leads to a product of irreducible polynomials in Fp[X]). It is clear that because if is reducible in Fp[X], then consequently p is not inert. Now, we prove the existence of such p, by proving explicit such p as follows. So we use on the other hand: 2) this property that we prove, and which is: If , is an irreducible normalized integer polynomial, whose splitting field is , then for any prime number p ∈ N: is always a reducible polynomial. 3) Consequently, and this closes our proof: let’s consider the set (whose cardinality is infinite) of monogenic biquadratic number fields: . Then each f<sub>θ</sub>(X) checks the above properties, this means that for family M, all its fields, do not admit any inert prime numbers p ∈ N. 2020-Mathematics Subject Classification (MSC2020) 11A41 - 11A51 - 11D25 - 11R04 - 11R09 - 11R11 - 11R16 - 11R32 - 11T06 - 12E05 - 12F05 -12F10 -13A05-13A15 - 13B02 - 13B05 - 13B10 - 13B25 -13F05展开更多
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec...Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.展开更多
In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze ...In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.展开更多
In this paper,the approximate synchronization of leader-follower multiagent systems(MASs) over finite fields is studied in regard to local and global synchronization.First,the approximately synchronous state set(ASSS)...In this paper,the approximate synchronization of leader-follower multiagent systems(MASs) over finite fields is studied in regard to local and global synchronization.First,the approximately synchronous state set(ASSS) is obtained.Second,combined with ASSS and transient periods,some criteria for the local and global approximate synchronization of systems are given.Moreover,the algorithms for calculating the maximum approximately synchronous basin(MASB) and the maximum control invariant set(MCIS) are presented.Third,the global approximate synchronization of the system is achieved by designing the state feedback control,and a design algorithm of the controller using the truth matrix method is proposed.Moreover,the results of approximate synchronization are degenerated to complete synchronization.Last,two examples are shown to demonstrate the results of this paper.展开更多
In this study,we proposed a novel method that integrates density functional theory(DFT)with the finite field method to accurately estimate the polarizability and dielectric constant of polymers.Our approach effectivel...In this study,we proposed a novel method that integrates density functional theory(DFT)with the finite field method to accurately estimate the polarizability and dielectric constant of polymers.Our approach effectively accounts for the influence of electronic and geometric conformation changed on the dielectric constant.We validated our method using polyethylene(PE)and polytetrafluoroethylene(PTFE)as benchmark materials,and found that it reliably predicted their dielectric constants.Furthermore,we explored the impact of conformation variations in poly(vinylidene fluoride)(PVDF)on its dielectric constant and polarizability.The resulting dielectric constants ofα-andγ-PVDF(3.0)showed excellent agreement with crystalline PVDF in experiments.Our findings illuminate the relationship between PVDF’s structural properties and its electrical behavior,offering valuable insights for material design and applications.展开更多
Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author im...Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author improves Wan-Zhang's bound from three aspects.The proposed results are based on the estimates related to the number of certain permutations and the value sets of non-permutation polynomials associated to the complete symmetric polynomial.And the author believes that there are still possibilities to improve the bounds and hence Wan-Zhang's bound.展开更多
基金sponsored by the National Natural Science Foundation,Youth Foundation of China,Grant/Award Number:51607146Sichuan Natural Sciences Fund,Grant/Award Number:2023NSFSC0295。
文摘In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.
基金supported by the National Basic Research Program (973 Program)under Grant No.2013CB834205 the National Natural Science Foundation of China under Grant No.61272035 the Independent Innovation Foundation of Shandong University under Grant No.2012JC020
文摘In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, we discuss the construction of an invalid curve based on the faulted divisor. Our attacks are based on the fact that the Hyperelliptic Curve Scalar Multiplication (HECSM) algorithm does not utilize the curve parameters and We consider three hyperelliptic curves as the attack targets. For curve with security level 186 (in bits), our attack method can get the weakest invalid curve with security level 42 (in bits); there are 93 invalid curves with security level less than 50. We also estimate the theoretical probability of getting a weak hyperelliptic curve whose cardinality is a smooth integer. Finally, we show that the complexity of the fault attack is subexponential if the attacker can freely inject a fault in the input divisor. Cryptosystems based on the genus 2 hyperelliptic curves cannot work against our attack algorithm in practice.
文摘Let Fq be a finite field. In this paper, a construction of Cartesian au-thentication codes from the normal form of a class of nilpotent matrices over the field Fq is presented. Moreover, assume that the encoding rules are chosen according to a uniform probability distribution, the probabilities PI and PS, of a successful im-personation attack and of a successful substitution attack respectively, of these codes are also computed.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province,China
文摘Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented.First,a signal flow graph(SFG) is used to represent the algorithm for multiplication over GF(2m).Then,the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming,respectively.Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs,To the authors' knowledge,the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials.The proposed low latency designs are regular and modular,and therefore they are suitable for many time critical applications.
文摘Let F q be a finite field with qelements where q=p~α. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (n+t,n)(F q), singular unitary group U (n+t,n)(F (q^2)) and singular orthogonal group O (n+t,n)(F q)(n is even) over finite fields F q.
基金This work is supported by project number 1998-015-D00015.
文摘This paper proves that if qn is large enough, for each element a and primitive element b of Fq, there etists a primitive polynomial of degree n ≥5 over the finite field Fq having a as the coefficient of xn-1 and b as the constant term. This proves that if qn is large enongh, for each element a ∈Fq, there exists a primitive polynomial of degree n ≥ 5 over Fq having a as the coefficient of x.
基金Supported by the National Natural Science Foundation of China(10771023)
文摘In the present paper, we compute the number of the symplectic involaLions over the finite field F with chafF = 2, and also one Cartesian authentication code is obtained.Furthermore, its size parameters are computed completely. If assume that the coding rules are chosen according to a uniform probability, PI and Ps denote the largest probabilities of a successful impersonation attack and a successful substitution attack respectively, then PI and Ps are also computed.
文摘By establishing the connection between graph colouring and the solution of some equation systems in finite fields, we obtain some formulas to the number of solutions of some equation systems in finite fields, in terms of chromatic polynomial of a graph.
文摘A (t, n)--secret sharing scheme is a method of distribution of information among n participants such that t 〉 1 can reconstruct the secret but (t - 1) cannot. We explore some (k, n)--secret sharing schemes based on the finite fields.
文摘In this paper, we study about trigonometry in finite field, we know that , the field with p elements, where p is a prime number if and only if p = 8k + 1 or p = 8k -1. Let F and K be two fields, we say that F is an extension of K, if K⊆F or there exists a monomorphism f: K→F. Recall that , F[x] is the ring of polynomial over F. If (means that F is an extension of K), an element is algebraic over K if there exists such that f(u) = 0 (see [1]-[4]). The algebraic closure of K in F is , which is the set of all algebraic elements in F over K.
文摘Castex of AS wire is a new technology of near net shape. To study the variation of temperature and velocity of liquid (or semisolid) aluminum during dynamic solidification the numerical simulation was carried out with the theory of heat-transfer and hydrodynamics by means of 3-dimensional finite element method. From simulation results, it is found that the variation of temperature and velocityis mainly influenced by the casting temperature of aluminum, rotating speed of Castex wheel and flow of cooling water. Among theseinfluencing factors, the casting temperature distributes most to the length of liquid phase metal. Moreover, the faster the metal solidifies,the higher the metal there moves with the overall trend of descending from the bottom of the wheel to the shoe wall as well as from sidewalls to the center of wheel groove. In comparison with the practical value, the simulation is reliable.
文摘The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> is the Dedekind domain of the integer elements of K. To prove such a result, consider for any prime p, the decomposition into a product of prime ideals of Zk</sub>, of the ideal . From this point, we use on the one hand: 1) The well- known property that says: If , then the ideal pZ<sub>k</sub> decomposes into a product of prime ideals of Zk</sub> as following: . (where:;is the irreducible polynomial of θ, and, is its reduction modulo p, which leads to a product of irreducible polynomials in Fp[X]). It is clear that because if is reducible in Fp[X], then consequently p is not inert. Now, we prove the existence of such p, by proving explicit such p as follows. So we use on the other hand: 2) this property that we prove, and which is: If , is an irreducible normalized integer polynomial, whose splitting field is , then for any prime number p ∈ N: is always a reducible polynomial. 3) Consequently, and this closes our proof: let’s consider the set (whose cardinality is infinite) of monogenic biquadratic number fields: . Then each f<sub>θ</sub>(X) checks the above properties, this means that for family M, all its fields, do not admit any inert prime numbers p ∈ N. 2020-Mathematics Subject Classification (MSC2020) 11A41 - 11A51 - 11D25 - 11R04 - 11R09 - 11R11 - 11R16 - 11R32 - 11T06 - 12E05 - 12F05 -12F10 -13A05-13A15 - 13B02 - 13B05 - 13B10 - 13B25 -13F05
基金Supported by the Research Starting Funds for Imported Talents of Ningxia University under Grant No BQD2012011
文摘Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.
文摘In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.
基金supported by the National Natural Science Foundation of China under Grant Nos.62373178,62273201,and 62103176the Research Fundfor the Taishan Scholar Project of Shandong Province of China under Grant Nos.tstp20221103 and tstp20221103。
文摘In this paper,the approximate synchronization of leader-follower multiagent systems(MASs) over finite fields is studied in regard to local and global synchronization.First,the approximately synchronous state set(ASSS) is obtained.Second,combined with ASSS and transient periods,some criteria for the local and global approximate synchronization of systems are given.Moreover,the algorithms for calculating the maximum approximately synchronous basin(MASB) and the maximum control invariant set(MCIS) are presented.Third,the global approximate synchronization of the system is achieved by designing the state feedback control,and a design algorithm of the controller using the truth matrix method is proposed.Moreover,the results of approximate synchronization are degenerated to complete synchronization.Last,two examples are shown to demonstrate the results of this paper.
基金This work was financially supported by the Project of Shenzhen Science and Technology(Nos.JCYJ20210324095210028 and JSGGZD20220822095201003)the National Natural Science Foundation of China(No.U21A2087).
文摘In this study,we proposed a novel method that integrates density functional theory(DFT)with the finite field method to accurately estimate the polarizability and dielectric constant of polymers.Our approach effectively accounts for the influence of electronic and geometric conformation changed on the dielectric constant.We validated our method using polyethylene(PE)and polytetrafluoroethylene(PTFE)as benchmark materials,and found that it reliably predicted their dielectric constants.Furthermore,we explored the impact of conformation variations in poly(vinylidene fluoride)(PVDF)on its dielectric constant and polarizability.The resulting dielectric constants ofα-andγ-PVDF(3.0)showed excellent agreement with crystalline PVDF in experiments.Our findings illuminate the relationship between PVDF’s structural properties and its electrical behavior,offering valuable insights for material design and applications.
基金supported by the Natural Science Foundation of Fujian Province,China under Grant No.2022J02046Fujian Key Laboratory of Granular Computing and Applications (Minnan Normal University)Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics。
文摘Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author improves Wan-Zhang's bound from three aspects.The proposed results are based on the estimates related to the number of certain permutations and the value sets of non-permutation polynomials associated to the complete symmetric polynomial.And the author believes that there are still possibilities to improve the bounds and hence Wan-Zhang's bound.