The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategi...The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback.In this paper,we show that such mechanism can equally ramp up the learning speed in ILC systems.We first propose a fractional power update rule for ILC of single-input-single-output linear systems.A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process.Using the nonlinear mapping approach,fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven.The limit cycles are shown to be tunable to determine the steady states.Numerical simulations are provided to verify the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(62173333)Australian Research Council Discovery Program(DP200101199)。
文摘The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback.In this paper,we show that such mechanism can equally ramp up the learning speed in ILC systems.We first propose a fractional power update rule for ILC of single-input-single-output linear systems.A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process.Using the nonlinear mapping approach,fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven.The limit cycles are shown to be tunable to determine the steady states.Numerical simulations are provided to verify the theoretical results.