期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China 被引量:21
1
作者 WANGQing-kui WANGSi-long DENGShi-jian 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第1期23-26,i002,共5页
Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract... Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation. 展开更多
关键词 Active soil organic matter Chinese fir plantation Native broad-leaved forest Soil nutrient elements
下载PDF
Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China 被引量:11
2
作者 Guannv Gao Xueman Huang +7 位作者 Haocheng Xu Yi Wang Weijun Shen Wen Zhang Jinliu Yan Xiaoyan Su Shushou Liao Yeming You 《Forest Ecosystems》 SCIE CSCD 2022年第6期823-837,共15页
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ... Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality. 展开更多
关键词 Broadleaved tree species Chinese fir plantation Soil aggregate stability HUMUS Bacterial and fungal communities High-throughput sequencing
下载PDF
Dynamics of soil inorganic phosphorus fractions at aggregate scales in a chronosequence of Chinese fir plantations 被引量:3
3
作者 ZHANG Zhe HUANG Yong-zhen +2 位作者 HE Xin-xin YE Shao-ming WANG Sheng-qiang 《Journal of Mountain Science》 SCIE CSCD 2022年第1期136-150,共15页
Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir planta... Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P. 展开更多
关键词 Inorganic phosphorus fractions Soil aggregates Chinese fir plantations Cunninghamia lanceolata
下载PDF
Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions 被引量:2
4
作者 Zhiqiang Ma Xinyu Zhang +6 位作者 Chuang Zhang Huimin Wang Fusheng Chen Xiaoli Fu Xiangmin Fang Xiaomin Sun Qiuliang Lei 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期948-957,共10页
Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not bee... Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not been well-defined for Chinese fir plantations in subtropical China. We set up six different treatments, viz. a control (CK), two N treatments (NI: 50kgha-1 a-1; N2: 100 kg ha-1 a-1), one P treatment (P: 50 kg ha-1 a-1), and two combined N and P treatments (NIP: 50kgha-1a-1 of N +50kgha-1a-1 of P; N2P:100 kg ha-1 a-1 of N + 50 kg ha-1 a-1 of P). We then investigated the influences of N and P additions on residual microbial C. The results showed that soil pH and microbial biomass decreased after N additions, while microbial biomass increased after P additions. Soil organic carbon (SOC) and residual microbial C contents increased in the N and P treatments but not in the control. Residual microbial C accumulation varied according to treatment and declined in the order: N2P 〉 N1P 〉 N2 〉 N1 〉 P 〉 CK. Residual microbial C contents were positively correlated with available N, P, and SOC contents, but were negatively correlated with soil pH. The ratio of residual fungal C to residual bacterial C increased under P additions, but declined under combined N1P additions. The ratio of residual microbial C to SOC increased from 11 to 14% under the N1P and N2P treatments, respectively. Our results suggest that the concentrations of residual microbial C and the stability of SOC would increase under combined applications of N and P fertilizers in subtropical Chinese fir plantation soils. 展开更多
关键词 Amino sugar Chinese fir plantation N and Padditions Residual microbial carbon Soil environmentvariable
下载PDF
Retention of harvest residues promotes the accumulation of topsoil organic carbon by increasing particulate organic carbon in a Chinese fir plantation
5
作者 Jiamin Yang Ke Huang +5 位作者 Xin Guan Weidong Zhang Renshan Li Longchi Chen Silong Wang Qingpeng Yang 《Forest Ecosystems》 SCIE 2024年第5期720-727,共8页
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled... Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10​cm)and subsoil(20–40​cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management. 展开更多
关键词 Chinese fir plantation Soil organic carbon Particulate organic carbon Mineral-associated organic carbon Harvest residue management
下载PDF
Distribution of organic carbon fractions in soil aggregates in Chinese fir plantations with different stand ages 被引量:13
6
作者 Xinxin He Yongzhen Huang +2 位作者 Qianchun Zhang Shaoming Ye Shengqiang Wang 《Ecological Processes》 SCIE EI 2021年第1期646-658,共13页
Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding th... Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem.In this study,soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages(0,9,17,and 26 years old)in Guangxi,China.With the optimal moisture sieving method adopted,the soil aggregates of 4 different sizes were obtained,including>2-mm,2–1-mm,1–0.25-mm,and<0.25-mm aggregates.Soil OC and LOC fractions were measured in the aggregates of different sizes.The LOC fractions included readily oxidizable carbon(ROC),particulate organic carbon(POC),microbial biomass carbon(MBC),water-soluble organic carbon(WOC),and mineralized organic carbon(MOC).Results:Soil aggregate stability,as indicated by the mean weight diameter(MWD),was the highest in the 17-yearold Chinese fir plantations and was significantly positively related(p<0.05)to the concentrations of OC and LOC fractions(except for the ROC and MOC),with the POC in particular.As for all stand ages of Chinese fir plantations,the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased.Consequently,there were more OC and LOC fractions distributed in the<0.25-mm aggregates.During the stand development,the concentrations of soil OC and LOC fractions first increased and then decreased,with the highest levels detected in the 17-year-old Chinese fir plantations,indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions.Conclusion:After 17 years of planting,promoted soil carbon(especially for the POC)accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi,China. 展开更多
关键词 Chinese fir plantation Soil aggregates Organic carbon Labile organic carbon fractions
原文传递
Stability of soil organic carbon changes in successive rotations of Chinese fir(Cunninghamia lanceolata(Lamb.) Hook) plantations 被引量:7
7
作者 ZHANG Jian WANG Silong +1 位作者 FENG Zongwei WANG Qingkui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第3期352-359,共8页
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of success... The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils. 展开更多
关键词 Chinese fir plantation forest soils organic carbon microbial property biochemical quality density fractionation
下载PDF
Research on Change of Rhizosphere Soil Properties of Chinese fir Plantation 被引量:1
8
作者 YANG Chengdong JIAO Ruzhen SUN QiwuResearch Institute of Forestry. Chinese Academy of Forestry. Beijing 100091. China 《Chinese Forestry Science and Technology》 2002年第4期18-26,共9页
This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cu... This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantation. It also reviews their dynamic patterns during Chinese fir plantation development. The results show that the contents of organic and inorganic nutrients in the rhizosphere soil of young, half-mature and near-mature Chinese fir of first-rotation ... 展开更多
关键词 Chinese fir plantation rhizosphere soil non-rhizosphere soil soil properties
原文传递
Natural Resistance of Two Plantation Woods Populus × canadensis cv. and Cunninghamia lanceolata to Decay Fungi and Termites
9
作者 XingJia-qi MomoharaIkuo OhmuraWakako 《Forestry Studies in China》 CAS 2005年第1期36-39,共4页
Natural durability of two plantation woods, Chinese fir and I-214 poplar, was investigated thoroughly by three test- ing methods, namely an accelerated laboratory decay test, a fungus cellar test and a field test. Af... Natural durability of two plantation woods, Chinese fir and I-214 poplar, was investigated thoroughly by three test- ing methods, namely an accelerated laboratory decay test, a fungus cellar test and a field test. After the decay test using Postia pla- centa and Trametes versicolor, Chinese fir and the I-214 poplar showed 34% and 69% of mass loss, respectively, indicating they should be classified as slightly durable and non-durable wood. This conclusion was confirmed by the fungus cellar test and the field test. Like the performance in the decay test, I-214 poplar showed no resistance to termites either in the laboratory or in the field, whereas Chinese fir would be classified as moderately resistant. 展开更多
关键词 plantation Chinese fir plantation I-214 poplar natural resistance to decay fungi and termites
下载PDF
田林老山中山两类森林凋落物研究 被引量:28
10
作者 梁宏温 《生态学杂志》 CAS CSCD 北大核心 1994年第1期21-26,共6页
田林老山中山两类森林凋落物研究梁宏温(广西农学院林学分院,南宁530001)StudiesontheLitterfallofTwoForestTypcsinMid—AltitudeofLaoshanMountaini... 田林老山中山两类森林凋落物研究梁宏温(广西农学院林学分院,南宁530001)StudiesontheLitterfallofTwoForestTypcsinMid—AltitudeofLaoshanMountaininTianlinCounty.¥L... 展开更多
关键词 evergreen and deciduous broadleaved mixed forest.Chinese fir plantation litterfall nutrient element return decompositon rate.
下载PDF
A preliminary study on the effects of line and selective thinning on bird communities in Hokkaido, northern Japan 被引量:1
11
作者 Yuya Toyoshima Yuichi Yamaura +1 位作者 Yuki Yabuhara Futoshi Nakamura 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第3期553-559,共7页
In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities... In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities in Todo fir (Abies sachalinensis) plantations in Hok- kaido, Japan. We surveyed bird species in forests under four different management types - unthinned, selectively thinned, line-thinned planta- tion, and naturally regenerated forest (here after referred to as natural forest) stands - using a line-transect method. We also investigated vege- tation structure (canopy tree and understory) of these stands. Bird species richness did not differ between natural forests and plantations, while bird total abundance was greater in plantations than in natural forests. Bird species richness and total abundance were comparable among the three management types for plantations. Abundances of 10 bird species were different among the four management types, and five species were more abundant in line-thinned plantations. However, two species were more abundant in selectively thinned stands than in line-thinned stands, and they frequently appeared in natural forests. There were no distinct differ- ences in vegetation structure among the management types for planta- tions. Our results suggest that line thinning could be beneficial for some bird species in plantations. 展开更多
关键词 line thinning selective thinning Todo fir (Abies sachalinen-sis) plantation improved indicator species analysis bird community
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部