Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract...Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.展开更多
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ...Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.展开更多
Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir planta...Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P.展开更多
Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not bee...Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not been well-defined for Chinese fir plantations in subtropical China. We set up six different treatments, viz. a control (CK), two N treatments (NI: 50kgha-1 a-1; N2: 100 kg ha-1 a-1), one P treatment (P: 50 kg ha-1 a-1), and two combined N and P treatments (NIP: 50kgha-1a-1 of N +50kgha-1a-1 of P; N2P:100 kg ha-1 a-1 of N + 50 kg ha-1 a-1 of P). We then investigated the influences of N and P additions on residual microbial C. The results showed that soil pH and microbial biomass decreased after N additions, while microbial biomass increased after P additions. Soil organic carbon (SOC) and residual microbial C contents increased in the N and P treatments but not in the control. Residual microbial C accumulation varied according to treatment and declined in the order: N2P 〉 N1P 〉 N2 〉 N1 〉 P 〉 CK. Residual microbial C contents were positively correlated with available N, P, and SOC contents, but were negatively correlated with soil pH. The ratio of residual fungal C to residual bacterial C increased under P additions, but declined under combined N1P additions. The ratio of residual microbial C to SOC increased from 11 to 14% under the N1P and N2P treatments, respectively. Our results suggest that the concentrations of residual microbial C and the stability of SOC would increase under combined applications of N and P fertilizers in subtropical Chinese fir plantation soils.展开更多
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled...Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.展开更多
Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding th...Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem.In this study,soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages(0,9,17,and 26 years old)in Guangxi,China.With the optimal moisture sieving method adopted,the soil aggregates of 4 different sizes were obtained,including>2-mm,2–1-mm,1–0.25-mm,and<0.25-mm aggregates.Soil OC and LOC fractions were measured in the aggregates of different sizes.The LOC fractions included readily oxidizable carbon(ROC),particulate organic carbon(POC),microbial biomass carbon(MBC),water-soluble organic carbon(WOC),and mineralized organic carbon(MOC).Results:Soil aggregate stability,as indicated by the mean weight diameter(MWD),was the highest in the 17-yearold Chinese fir plantations and was significantly positively related(p<0.05)to the concentrations of OC and LOC fractions(except for the ROC and MOC),with the POC in particular.As for all stand ages of Chinese fir plantations,the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased.Consequently,there were more OC and LOC fractions distributed in the<0.25-mm aggregates.During the stand development,the concentrations of soil OC and LOC fractions first increased and then decreased,with the highest levels detected in the 17-year-old Chinese fir plantations,indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions.Conclusion:After 17 years of planting,promoted soil carbon(especially for the POC)accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi,China.展开更多
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of success...The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.展开更多
This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cu...This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantation. It also reviews their dynamic patterns during Chinese fir plantation development. The results show that the contents of organic and inorganic nutrients in the rhizosphere soil of young, half-mature and near-mature Chinese fir of first-rotation ...展开更多
Natural durability of two plantation woods, Chinese fir and I-214 poplar, was investigated thoroughly by three test- ing methods, namely an accelerated laboratory decay test, a fungus cellar test and a field test. Af...Natural durability of two plantation woods, Chinese fir and I-214 poplar, was investigated thoroughly by three test- ing methods, namely an accelerated laboratory decay test, a fungus cellar test and a field test. After the decay test using Postia pla- centa and Trametes versicolor, Chinese fir and the I-214 poplar showed 34% and 69% of mass loss, respectively, indicating they should be classified as slightly durable and non-durable wood. This conclusion was confirmed by the fungus cellar test and the field test. Like the performance in the decay test, I-214 poplar showed no resistance to termites either in the laboratory or in the field, whereas Chinese fir would be classified as moderately resistant.展开更多
In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities...In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities in Todo fir (Abies sachalinensis) plantations in Hok- kaido, Japan. We surveyed bird species in forests under four different management types - unthinned, selectively thinned, line-thinned planta- tion, and naturally regenerated forest (here after referred to as natural forest) stands - using a line-transect method. We also investigated vege- tation structure (canopy tree and understory) of these stands. Bird species richness did not differ between natural forests and plantations, while bird total abundance was greater in plantations than in natural forests. Bird species richness and total abundance were comparable among the three management types for plantations. Abundances of 10 bird species were different among the four management types, and five species were more abundant in line-thinned plantations. However, two species were more abundant in selectively thinned stands than in line-thinned stands, and they frequently appeared in natural forests. There were no distinct differ- ences in vegetation structure among the management types for planta- tions. Our results suggest that line thinning could be beneficial for some bird species in plantations.展开更多
文摘Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.
基金the National Natural Science Foundation of China(Nos.31960240 and 32171755)the Guangxi Natural Science Foundation(No.2019GXNSFAA185023)the Scientific Research Capacity Building Project for Youyiguan Forest Ecosystem Observation and Research Station of Guangxi under Grant No.2203513003。
文摘Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.
基金supported by the Guangxi Special Fund Project for Innovation Driven Development (AA 17204087-8)the Innovation Project of Guangxi Graduate Education (YCSW2020022)。
文摘Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P.
基金jointly financed by the Programs of the National Natural Science Foundation of China(Nos.41571251,41571130043)the Major State Basic Research Development Program of China(No.2012CB416903)
文摘Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not been well-defined for Chinese fir plantations in subtropical China. We set up six different treatments, viz. a control (CK), two N treatments (NI: 50kgha-1 a-1; N2: 100 kg ha-1 a-1), one P treatment (P: 50 kg ha-1 a-1), and two combined N and P treatments (NIP: 50kgha-1a-1 of N +50kgha-1a-1 of P; N2P:100 kg ha-1 a-1 of N + 50 kg ha-1 a-1 of P). We then investigated the influences of N and P additions on residual microbial C. The results showed that soil pH and microbial biomass decreased after N additions, while microbial biomass increased after P additions. Soil organic carbon (SOC) and residual microbial C contents increased in the N and P treatments but not in the control. Residual microbial C accumulation varied according to treatment and declined in the order: N2P 〉 N1P 〉 N2 〉 N1 〉 P 〉 CK. Residual microbial C contents were positively correlated with available N, P, and SOC contents, but were negatively correlated with soil pH. The ratio of residual fungal C to residual bacterial C increased under P additions, but declined under combined N1P additions. The ratio of residual microbial C to SOC increased from 11 to 14% under the N1P and N2P treatments, respectively. Our results suggest that the concentrations of residual microbial C and the stability of SOC would increase under combined applications of N and P fertilizers in subtropical Chinese fir plantation soils.
基金supported by the National Natural Science Foundation of China(No.32192434)the National Key Research and Development Program of China(No.2022YFF1303003).
文摘Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.
基金The National Natural Science Foundation of China(No.31460196)Research Basic Ability Improvement Project of Young and Middle-aged Teachers in Guangxi Universities(No.2021KY0014)financed the present study。
文摘Background:Revealing the variations in soil aggregate-related organic carbon(OC)and labile organic carbon(LOC)fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem.In this study,soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages(0,9,17,and 26 years old)in Guangxi,China.With the optimal moisture sieving method adopted,the soil aggregates of 4 different sizes were obtained,including>2-mm,2–1-mm,1–0.25-mm,and<0.25-mm aggregates.Soil OC and LOC fractions were measured in the aggregates of different sizes.The LOC fractions included readily oxidizable carbon(ROC),particulate organic carbon(POC),microbial biomass carbon(MBC),water-soluble organic carbon(WOC),and mineralized organic carbon(MOC).Results:Soil aggregate stability,as indicated by the mean weight diameter(MWD),was the highest in the 17-yearold Chinese fir plantations and was significantly positively related(p<0.05)to the concentrations of OC and LOC fractions(except for the ROC and MOC),with the POC in particular.As for all stand ages of Chinese fir plantations,the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased.Consequently,there were more OC and LOC fractions distributed in the<0.25-mm aggregates.During the stand development,the concentrations of soil OC and LOC fractions first increased and then decreased,with the highest levels detected in the 17-year-old Chinese fir plantations,indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions.Conclusion:After 17 years of planting,promoted soil carbon(especially for the POC)accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi,China.
基金supported by the National Natural Sci-ence Foundation of China (No. 30470303)the Key Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-405)
文摘The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.
文摘This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantation. It also reviews their dynamic patterns during Chinese fir plantation development. The results show that the contents of organic and inorganic nutrients in the rhizosphere soil of young, half-mature and near-mature Chinese fir of first-rotation ...
基金Supported by Sino-Japanese Technical Cooperation Project Titled "Studies on Chinese Plantation Wood" (JICA PROJECT/033-1418-E-O)
文摘Natural durability of two plantation woods, Chinese fir and I-214 poplar, was investigated thoroughly by three test- ing methods, namely an accelerated laboratory decay test, a fungus cellar test and a field test. After the decay test using Postia pla- centa and Trametes versicolor, Chinese fir and the I-214 poplar showed 34% and 69% of mass loss, respectively, indicating they should be classified as slightly durable and non-durable wood. This conclusion was confirmed by the fungus cellar test and the field test. Like the performance in the decay test, I-214 poplar showed no resistance to termites either in the laboratory or in the field, whereas Chinese fir would be classified as moderately resistant.
文摘In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities in Todo fir (Abies sachalinensis) plantations in Hok- kaido, Japan. We surveyed bird species in forests under four different management types - unthinned, selectively thinned, line-thinned planta- tion, and naturally regenerated forest (here after referred to as natural forest) stands - using a line-transect method. We also investigated vege- tation structure (canopy tree and understory) of these stands. Bird species richness did not differ between natural forests and plantations, while bird total abundance was greater in plantations than in natural forests. Bird species richness and total abundance were comparable among the three management types for plantations. Abundances of 10 bird species were different among the four management types, and five species were more abundant in line-thinned plantations. However, two species were more abundant in selectively thinned stands than in line-thinned stands, and they frequently appeared in natural forests. There were no distinct differ- ences in vegetation structure among the management types for planta- tions. Our results suggest that line thinning could be beneficial for some bird species in plantations.