Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real time monitoring, behavior simulation and loss assessment have been carried out in many countries. A...Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire danger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.展开更多
文摘Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire danger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.