期刊文献+
共找到8,226篇文章
< 1 2 250 >
每页显示 20 50 100
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:4
1
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption thermal insulation
下载PDF
Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation 被引量:1
2
作者 Yosr Laatiri Habib Sammouda Fadhel Aloulou 《Journal of Renewable Materials》 EI CAS 2024年第4期771-798,共28页
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul... This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems. 展开更多
关键词 CEMENT wood fiber PCM thermal conductivity thermal insulation solar energy
下载PDF
Multifunctional Integrated Organic-Inorganic-Metal Hybrid Aerogel for Excellent Thermal Insulation and Electromagnetic Shielding Performance 被引量:1
3
作者 Zhaoqi Niu Fengjin Qu +8 位作者 Fang Chen Xiaoyan Ma Beixi Chen Luyao Wang Miao Xu Shumeng Wang Liang Jin Chengshuang Zhang Xiao Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期163-175,共13页
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li... Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments. 展开更多
关键词 Multi-hybrid aerogel Metal-phenolic coordination thermal insulation EMI shielding Convertibility and multifunctionality
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:1
4
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth thermal insulation Computer simulation technology
下载PDF
MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments 被引量:1
5
作者 Ziyuan Han Yutao Niu +11 位作者 Xuetao Shi Duo Pan Hu Liu Hua Qiu Weihua Chen Ben Bin Xu Zeinhom MEl-Bahy Hua Hou Eman Ramadan Elsharkawy Mohammed AAmin Chuntai Liu Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期82-98,共17页
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae... A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future. 展开更多
关键词 SiO_(2)nanofiber membranes MXene@c-MWCNT Composite film thermal insulation Electromagnetic interference shielding
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
6
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride thermal conductivity Electrical insulation
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
7
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring 被引量:1
8
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
9
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy insulation thermal conductivity
下载PDF
Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq
10
作者 Ahmed Mustaffa Saleem Abdullah A.Badr +1 位作者 Bahjat Hassan Alyas Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1231-1244,共14页
This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T... This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them. 展开更多
关键词 thermal insulation energy gain composites walls and roofs heat flux transmission matrix method
下载PDF
Fabrication and Characterization of Bamboo—Epoxy Reinforced Composite for Thermal Insulation
11
作者 Nandavardhan Reddy Kopparthi Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期15-32,共18页
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca... As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change. 展开更多
关键词 thermal insulator Rooftiles Hollow Glass Microspheres BAMBOO KAOLIN EPOXY VARTM Process thermal Conductivity Mechanical Properties
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
12
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building insulation Mechanical and thermal Properties
下载PDF
STEADY HEAT TRANSFER ANALYSIS AND PARAMETER OPTIMIZATION FOR MULTILAYER THERMAL INSULATIONS 被引量:2
13
作者 闫长海 曲寿江 +3 位作者 孟松鹤 陈贵清 杜善义 刘国仟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期257-263,共7页
The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal prote... The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity. 展开更多
关键词 metallic thermal protection system steady heat transfer muhilayer thermal insulations genetic algorithm
下载PDF
Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously 被引量:10
14
作者 Kai Long Xuan Wang Xianguang Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期315-326,共12页
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal ... The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the loadcarrying capabilities and the thermal insulation properties.The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved. 展开更多
关键词 Concurrent design Topology optimization HOMOGENIZATION thermal insulation Nodal displacement Independent continuous mapping method
下载PDF
Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption 被引量:33
15
作者 Weihua Gu Jiaqi Sheng +3 位作者 Qianqian Huang Gehuan Wang Jiabin Chen Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期28-41,共14页
Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property,heat-insulating ability and compression resistance are highly attractive in practical applications.Meeting the afo... Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property,heat-insulating ability and compression resistance are highly attractive in practical applications.Meeting the aforesaid requirements simultaneously is a formidable challenge.Herein,ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process,forming porous network architecture.With the heating platform temperature of 70℃,the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend.The color of the sample surface in thermal infrared images is similar to that of the surroundings.With the maximum compressive stress of 2.435 kPa,the carbon aerogels can provide favorable endurance.The shaddock peel-based carbon aerogels possess the minimum reflection loss value(RLmin)of−29.50 dB in X band.Meanwhile,the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm.With the detection theta of 0°,the maximum radar cross-sectional(RCS)reduction values of 16.28 dB m^(2) can be achieved.Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature.This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations. 展开更多
关键词 Microwave absorption thermal insulation Carbon aerogel Radar cross-sectional simulation Multi-function
下载PDF
Mechanism of low thermal conductivity of xonotlite-silica aerogel nanoporous super insulation material 被引量:8
16
作者 Hailong Yang Wen Ni Deping Chen Guoqiang Xu Tao Liang Li Xu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第5期649-653,共5页
In an effort to incorporate the low thermal conductivity of the silica aerogel and the superior structure strength of the xonotlite,a composite material of these two was produced. It was synthesized under vacuum condi... In an effort to incorporate the low thermal conductivity of the silica aerogel and the superior structure strength of the xonotlite,a composite material of these two was produced. It was synthesized under vacuum condition and dried by supercritical drying technique. The thermal conductivity of the new material,which is at 298K with the gas pressure ranging from 1.01×10^5 to 1×10^-2 Pa,was measured using the transient hot-strip method. The mechanism of the low thermal conductivity was studied. The results indicate that the low thermal conductivity mainly results from the significant decrease of gaseous thermal conductivity of the new material due to the restriction of the motion of gas molecules in its fine structures. The formation of the fine structures is because the new material takes the pore structure of the silica aerogel which consists of mainly nanometer-sized pores. 展开更多
关键词 silica aerogel XONOTLITE nanometer-sized pore super insulation thermal conductivity
下载PDF
Synthesis and Thermal Insulation Performance of Silica Aerogel from Recycled Coal Gangue by Means of Ambient Pressure Drying 被引量:5
17
作者 朱平华 ZHENG Meng +2 位作者 赵善宇 WU Junyong 徐海珣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期908-913,共6页
Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitan... Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitant precursors as well as cumbrous multi-step hydrophobization process has often narrowed the field of applications. In this work, granular silica aerogel materials were synthesized by extracting Si O2 from recycled rich silicon coal gangue, followed by one-step hydrophobization and ambient pressure drying. Lightweight(about 0.16 g/cm3) and nanostructural aerogels were obtained through this route. They exhibit a 3D open porous microstructure with around 600 cm2/g surface area and 20 nm of the average pore diameter, thermal conductivity of 4-5 mm packed granules is 20-25 m W/(m·K), which was proved by both guarded hot plate and hot-wire transient methods. This study offers a new facile route for the synthesis of silica aerogel from recycled solid waste coal gangue and suggests a method, which may lead to a cost reduction in terms of industrial production. 展开更多
关键词 silica aerogel coal gangue thermal insulation one-step hydrophobization
下载PDF
Weatherability Studies on External Insulation Thermal System of Expanded Polystyrene Board,Polystyrene Granule and Polyurethane Foam 被引量:5
18
作者 尹秀琴 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期1027-1032,共6页
Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,... Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area. 展开更多
关键词 external thermal insulation system EPS board polystyrene granule atmospheric exposure tests adhesive strength
下载PDF
Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation 被引量:10
19
作者 Fushuo Wu Peiying Hu +7 位作者 Feiyue Hu Zhihua Tian Jingwen Tang Peigen Zhang Long Pan Michel WBarsoum Longzhu Cai ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期74-89,共16页
Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-s... Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-stacking tendency,and high density.To tackle these challenges,MXene nanosheets were incorporated into polyacrylonitrile(PAN)nanofibers and subsequently assembled into a three-dimensional(3D)network structure through PAN carbonization,yielding MXene/C aerogels.The 3D network effectively extends the path of microcurrent transmission,leading to enhanced conductive loss of electromagnetic(EM)waves.Moreover,the aerogel’s rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXenebased absorbers.EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss(RL_(min))value of−53.02 dB(f=4.44 GHz,t=3.8 mm),and an effective absorption bandwidth(EAB)of 5.3 GHz(t=2.4 mm,7.44–12.72 GHz).Radar cross-sectional(RCS)simulations were employed to assess the radar stealth effect of the aerogels,revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m^(2).In addition to the MA performance,the MXene/C aerogel also demonstrates good thermal insulation performance,and a 5-mm-thick aerogel can generate a temperature gradient of over 30℃ at 82℃.This study provides a feasible design approach for creating lightweight,efficient,and multifunctional MXene-based MA materials. 展开更多
关键词 MXene Microwave absorption AEROGEL Radar cross-sectional(RCS)simulation thermal insulation
下载PDF
Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy 被引量:13
20
作者 Shengyang Zhou Varvara Apostolopoulou‑Kalkavoura +3 位作者 Marcus Vinicius Tavares da Costa Lennart Bergstrom Maria Stromme Chao Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期102-114,共13页
Metal–organic frameworks(MOFs)with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials.However,the difficulties in processing and shaping MOFs have ... Metal–organic frameworks(MOFs)with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials.However,the difficulties in processing and shaping MOFs have largely hampered their applications in these areas.This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers(CNFs)with continuous nanolayers of MOFs.The cross-linking gives the aerogels high mechanical strength but superelasticity(80%maximum recoverable strain,high specific compression modulus of^200 MPa cm3 g−1,and specific stress of^100 MPa cm3 g−1).The resultant lightweight aerogels have a cellular network structure and hierarchical porosity,which render the aerogels with relatively low thermal conductivity of^40 mW m−1 K−1.The hydrophobic,thermally stable MOF nanolayers wrapped around the CNFs result in good moisture resistance and fire retardancy.This study demonstrates that MOFs can be used as efficient thermal insulation and flame-retardant materials.It presents a pathway for the design of thermally insulating,superelastic fire-retardant nanocomposites based on MOFs and nanocellulose. 展开更多
关键词 Metal-organic frameworks NANOCELLULOSE Superelastic aerogel thermal insulation Fire retardancy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部