In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has ...The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has been rapidly developed and widely used in the field of the civil engineering because of its high building applicability,the fast construction speed,the low cost of the foundation and the good mechanical properties.Various kinds of the large-span,heavy-load and high-rise buildings emerge in endlessly,and the requirement for the structural performance is becoming higher and higher.The reinforced concrete column-steel beam composite frame structure is a high-performance structural system with the broad development prospects in China because of its good mechanical performance,durability,fire resistance and the building use space.展开更多
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ...The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.展开更多
As an important part of steel bridge deck,the engineering quality and service condition of steel bridge deck pavement(SBDP)directly affects the capacity and operational efficiency of the bridge.This paper reviews the ...As an important part of steel bridge deck,the engineering quality and service condition of steel bridge deck pavement(SBDP)directly affects the capacity and operational efficiency of the bridge.This paper reviews the history of the development of SBDP in China over the past 20 years from the exploration stage,rapid development stage and prosperity stage.The development and application of SBDP at different stages are discussed in terms of materials,structure,design,performance evaluation,maintenance and rehabilitation,respectively.The advantages and disadvantages of different pavement materials and structures,and the application of different research methods are summarized.The review shows that the improvement of pavement materials and structures and the development of new materials should be further studied on the multi-scale to enhance the durability of pavement materials,so as to extend the service life of pavements.The design method of SBDP related to the synergistic effect of vehicle,pavement and bridge should be established,and the design concept and method standard of rigid base pavement structure should be improved and formulate a complete design standard.In addition,multi-disease intelligent identification system and equipment should be studied to track the entire course of disease development in real time.And it is necessary to develop appropriate algorithms to select and classify the complex data of disease and maintenance history.展开更多
In consideration of the global optimization for engineering projects, a group of calculation formulas have been derived by means of theoretical derivation and model tests. On this basis, a design procedure for the dis...In consideration of the global optimization for engineering projects, a group of calculation formulas have been derived by means of theoretical derivation and model tests. On this basis, a design procedure for the distorted units is proposed, by means of which the distorted units of an anology shape and an identical porosity ratio with the original units can be obtained after conducting a distorted enlargement and a normal contraction. The stability waveheight and stability factor of the distorted unit can be calculated with the enlargement factor, a, of the horizontal dimension of the distorted unit, or with the contraction scale, A , of the contracted distorted unit. As a result, the stability of the armor unit can be significantly improved without increasing the quantity of concrete. For the same wave met by the original units, the thickness of placement of the contracted distorted unit can be obviously reduced, thus, a large quantity of concrete can be saved, consequently, economic benefit can be achieved.展开更多
Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also...Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.展开更多
In this paper,the potential of utilizing improved metaheuristic approaches in optimal design of building structures is concerned.In this regard,the drift-tribe-charged system search algorithm is proposed that the posi...In this paper,the potential of utilizing improved metaheuristic approaches in optimal design of building structures is concerned.In this regard,the drift-tribe-charged system search algorithm is proposed that the position and velocity updating processes of the charged system search is developed by implementing the mathematical presentation of the free-electron model utilized for metal conductors.In addition,the searching phase of the developed algorithm is also divided into three separate phases in order to improve the convergence capability of the algorithm.By means of these modifications,the exploitation and exploration rates of the standard algorithm are enhanced.In order to determine the ability of the proposed improved metaheuristic method considering some complex optimization problems,a 10-story steel building structure with 1026 structural members alongside a 60-story structure with 8272 members are utilized as numerical examples.The overall capability of the developed metaheuristic approach is compared with other metaheuristics.A total number of 30 independent runs have been conducted for each of the standard and proposed methods while a statistical analysis is also conducted for comparative purposes.The obtained optimum results demonstrated that the proposed metaheuristic approach is capable of preparing better outcomes than other metaheuristics.展开更多
In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, s...In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, structures composed of COLD-FORMED steel components, such as sheet metal and metal studs, have shown great promise in providing blast resistance with the added benefits of low cost and ease of construction. Some examples of using such structures to provide containment for package handling facilities (PHF) are described in the paper for situations where blast containment is needed, such as a potential package bomb being discovered during the package vetting process. Results from tests and analytic data are used to illustrate aspects of design peculiar to such types of applications. Designs for specific capacities of PHF are described.展开更多
This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite eleme...This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.展开更多
This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameter...This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.展开更多
This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work...This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work,two existing multi-sports gymnasiums are taken as a reference,but with ASTM(American Society for Testing and Materials)A36 steel roof structure.The proposed cover system uses cables and light gauge profiles,in commercial stainless steel,which reduces the weight and of course the final price of the roof structure.A structure that presents technical feasibility is obtained and analyzed by checking its behavior with respect to the efforts and displacements generated by the combinations of the acting loads,following the safety recommendations of the applicable standard.It is verified that using the stainless steel structure proposed in this work would cost 42%of the reference structure if this were in AISI(American Iron and Steel Institute)304 stainless steel.And this cost tends to be minimized due to greater durability and consequent reduction in maintenance costs of this type of steel.展开更多
The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box...The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.展开更多
Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algo...Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algorithm is developed to optimize the weight of steel frames according to standard design codes.Modifications are made to improve the algorithm performances including the constraint-based strategy,piecewise mean learning strategy and multi-population cooperative strategy.The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes.The related parameter influences on optimization results are discussed.For the representative frame,MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4%lighter.A similar trend can also be observed in cases subjected to Chinese design codes.In addition,a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results.The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes.It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity.The proposed method can be easily generalized to the optimization problem of other structural systems.展开更多
This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with cer...This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.展开更多
Height limitations are not uncommon in multi-storey buildings due to economic requirements and esthetical considerations. Substantial spaces are normally required to enable the passage of large pipes and ducts beneath...Height limitations are not uncommon in multi-storey buildings due to economic requirements and esthetical considerations. Substantial spaces are normally required to enable the passage of large pipes and ducts beneath steel beams leading to uneconomic floor heights. The most adopted solution for this issue is the use of steel beam web openings to provide the required space for services. These openings could lead to a significant decrease of the beam load carrying capacity depending on the adopted openings shape, size and location. These aspects motivated the present study based on FE simulations calibrated against numerical and test results. The results accuracy enabled a comprehensive parametric analysis of beams with web openings to be made focused on the profile size, web opening location, among others. The study also investigated the efficiency of longitudinal stiffeners welded at the opening region and benefits of using an adequate edge concordance radius in beams with rectangular and square openings. The obtained results showed the need of using welded longitudinal stiffeners in order to increase the beams ultimate load carrying capacity. This adoption can double or even triple the ultimate load of beams with rectangular and square opening heights equal to 0.75 H, respectively.展开更多
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ...Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.展开更多
In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and extern...In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats. The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes, the failure of high speed rotating machineries and accidental drops. The external impact threats may come from airborne missiles, aircraft impact, explosion blast and fragments. The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed. Methods and procedures for the impact assessment of nuclear power plants are introduced. Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.展开更多
In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,l...In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.展开更多
With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more s...With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.展开更多
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
文摘The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has been rapidly developed and widely used in the field of the civil engineering because of its high building applicability,the fast construction speed,the low cost of the foundation and the good mechanical properties.Various kinds of the large-span,heavy-load and high-rise buildings emerge in endlessly,and the requirement for the structural performance is becoming higher and higher.The reinforced concrete column-steel beam composite frame structure is a high-performance structural system with the broad development prospects in China because of its good mechanical performance,durability,fire resistance and the building use space.
基金funded by the National Natural Science Foundation of China(W.Zhang,Grant No.12220101002)Shaanxi Provincial Key Science and Technology Innovation Team(Y.Xu,Grant No.2023-CX-TD-14)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(D.Jia,Grant No.20230240)the Chinese Studentship Council(D.Jia,Grant No.201908060224).
文摘The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.
基金The authors appreciate the financial support from the National Natural Science Foundation of China(No.51878167)Qing Lan Project of Jiangsu Province。
文摘As an important part of steel bridge deck,the engineering quality and service condition of steel bridge deck pavement(SBDP)directly affects the capacity and operational efficiency of the bridge.This paper reviews the history of the development of SBDP in China over the past 20 years from the exploration stage,rapid development stage and prosperity stage.The development and application of SBDP at different stages are discussed in terms of materials,structure,design,performance evaluation,maintenance and rehabilitation,respectively.The advantages and disadvantages of different pavement materials and structures,and the application of different research methods are summarized.The review shows that the improvement of pavement materials and structures and the development of new materials should be further studied on the multi-scale to enhance the durability of pavement materials,so as to extend the service life of pavements.The design method of SBDP related to the synergistic effect of vehicle,pavement and bridge should be established,and the design concept and method standard of rigid base pavement structure should be improved and formulate a complete design standard.In addition,multi-disease intelligent identification system and equipment should be studied to track the entire course of disease development in real time.And it is necessary to develop appropriate algorithms to select and classify the complex data of disease and maintenance history.
文摘In consideration of the global optimization for engineering projects, a group of calculation formulas have been derived by means of theoretical derivation and model tests. On this basis, a design procedure for the distorted units is proposed, by means of which the distorted units of an anology shape and an identical porosity ratio with the original units can be obtained after conducting a distorted enlargement and a normal contraction. The stability waveheight and stability factor of the distorted unit can be calculated with the enlargement factor, a, of the horizontal dimension of the distorted unit, or with the contraction scale, A , of the contracted distorted unit. As a result, the stability of the armor unit can be significantly improved without increasing the quantity of concrete. For the same wave met by the original units, the thickness of placement of the contracted distorted unit can be obviously reduced, thus, a large quantity of concrete can be saved, consequently, economic benefit can be achieved.
文摘Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.
基金Supported by:Research Grant of the University of Tabriz under Grant No.1105。
文摘In this paper,the potential of utilizing improved metaheuristic approaches in optimal design of building structures is concerned.In this regard,the drift-tribe-charged system search algorithm is proposed that the position and velocity updating processes of the charged system search is developed by implementing the mathematical presentation of the free-electron model utilized for metal conductors.In addition,the searching phase of the developed algorithm is also divided into three separate phases in order to improve the convergence capability of the algorithm.By means of these modifications,the exploitation and exploration rates of the standard algorithm are enhanced.In order to determine the ability of the proposed improved metaheuristic method considering some complex optimization problems,a 10-story steel building structure with 1026 structural members alongside a 60-story structure with 8272 members are utilized as numerical examples.The overall capability of the developed metaheuristic approach is compared with other metaheuristics.A total number of 30 independent runs have been conducted for each of the standard and proposed methods while a statistical analysis is also conducted for comparative purposes.The obtained optimum results demonstrated that the proposed metaheuristic approach is capable of preparing better outcomes than other metaheuristics.
文摘In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, structures composed of COLD-FORMED steel components, such as sheet metal and metal studs, have shown great promise in providing blast resistance with the added benefits of low cost and ease of construction. Some examples of using such structures to provide containment for package handling facilities (PHF) are described in the paper for situations where blast containment is needed, such as a potential package bomb being discovered during the package vetting process. Results from tests and analytic data are used to illustrate aspects of design peculiar to such types of applications. Designs for specific capacities of PHF are described.
文摘This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.
文摘This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.
文摘This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work,two existing multi-sports gymnasiums are taken as a reference,but with ASTM(American Society for Testing and Materials)A36 steel roof structure.The proposed cover system uses cables and light gauge profiles,in commercial stainless steel,which reduces the weight and of course the final price of the roof structure.A structure that presents technical feasibility is obtained and analyzed by checking its behavior with respect to the efforts and displacements generated by the combinations of the acting loads,following the safety recommendations of the applicable standard.It is verified that using the stainless steel structure proposed in this work would cost 42%of the reference structure if this were in AISI(American Iron and Steel Institute)304 stainless steel.And this cost tends to be minimized due to greater durability and consequent reduction in maintenance costs of this type of steel.
文摘The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.
基金supported by National Natural Science Foundation of China(Grant Nos.52308142 and 52208185)Postdoctoral Fellowship Program of CPSF(No.GZC20233334)+1 种基金Special Support of Chongqing Postdoctoral Science Foundation(No.2021XM2039)National Key Research and Development Program of China(No.2022YFC3801700).
文摘Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algorithm is developed to optimize the weight of steel frames according to standard design codes.Modifications are made to improve the algorithm performances including the constraint-based strategy,piecewise mean learning strategy and multi-population cooperative strategy.The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes.The related parameter influences on optimization results are discussed.For the representative frame,MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4%lighter.A similar trend can also be observed in cases subjected to Chinese design codes.In addition,a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results.The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes.It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity.The proposed method can be easily generalized to the optimization problem of other structural systems.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.
文摘Height limitations are not uncommon in multi-storey buildings due to economic requirements and esthetical considerations. Substantial spaces are normally required to enable the passage of large pipes and ducts beneath steel beams leading to uneconomic floor heights. The most adopted solution for this issue is the use of steel beam web openings to provide the required space for services. These openings could lead to a significant decrease of the beam load carrying capacity depending on the adopted openings shape, size and location. These aspects motivated the present study based on FE simulations calibrated against numerical and test results. The results accuracy enabled a comprehensive parametric analysis of beams with web openings to be made focused on the profile size, web opening location, among others. The study also investigated the efficiency of longitudinal stiffeners welded at the opening region and benefits of using an adequate edge concordance radius in beams with rectangular and square openings. The obtained results showed the need of using welded longitudinal stiffeners in order to increase the beams ultimate load carrying capacity. This adoption can double or even triple the ultimate load of beams with rectangular and square opening heights equal to 0.75 H, respectively.
文摘Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.
文摘In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats. The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes, the failure of high speed rotating machineries and accidental drops. The external impact threats may come from airborne missiles, aircraft impact, explosion blast and fragments. The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed. Methods and procedures for the impact assessment of nuclear power plants are introduced. Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.
文摘In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.
文摘With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.