Lining materials are widely used in buildings to cover walls and ceilings. Combustible linings may produce a potential high fire hazard in buildings. Once ignited,it propagates fire and accelerates the enclosure fire ...Lining materials are widely used in buildings to cover walls and ceilings. Combustible linings may produce a potential high fire hazard in buildings. Once ignited,it propagates fire and accelerates the enclosure fire growth. Two types of lining materials were studied during the tests:block board and plywood. The test was conducted in an ISO 9705 room,where linings were mounted on walls without the ceiling. By changing the heat output of the burner,the ventilation,etc.,the concentrations of CO2/CO of different lining materials were researched. The effect of test conditions on the production of CO2/CO of different lining materials was investigated,and useful experimental data were provided for the further development of numerical modeling to simulate enclosure fire growth lined with combusti-ble materials.展开更多
为探明火灾下活性粉末混凝土(Receative power concrete,RPC)梁斜截面承载性能退化规律,设计制作了六根RPC简支梁试件,开展了恒载下ISO834标准火灾试验,获得了时间-位移曲线、荷载-位移曲线、内部温度变化、裂缝开展、破坏形态、高温爆...为探明火灾下活性粉末混凝土(Receative power concrete,RPC)梁斜截面承载性能退化规律,设计制作了六根RPC简支梁试件,开展了恒载下ISO834标准火灾试验,获得了时间-位移曲线、荷载-位移曲线、内部温度变化、裂缝开展、破坏形态、高温爆裂等数据,分析了剪跨比、荷载水平、配箍率、纵筋配筋率对火灾下RPC梁斜截面承载性能的影响规律。结果表明:剪跨比、荷载水平是影响RPC梁斜截面耐火极限的关键因素,剪跨比由2.5增至3.5,荷载水平由0.25增至0.45,RPC梁耐火极限可降低30 min以上;配箍率对RPC梁的斜截面承载力和耐火极限影响显著;纵筋配筋率对RPC梁耐火极限影响甚微。火灾高温、爆裂削弱了RPC梁的斜截面承载性能,爆裂导致内部材料直接受火,加速其力学性能劣化,使梁斜截面承载力降低33.5%以上。该研究可为火灾下RPC梁斜截面承载安全及火灾后加固修复提供参考。展开更多
To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load tes...To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load test and the other two for the one-side fire tests.Besides,temperature probe points were set on the sandwich walls to obtain the temperature distribution.Meanwhile,the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent.The temperature distribution and performance reduction of materials were also considered.The residual bearing capacity of specimens after fire exposure were simulated considering the effects of web spacing,wall panel thickness and fire exposure time.Because the sandwich wall panels were stressed by eccentric compression after a fire,the residual compressive strength of the wall panel after the fire can be calculated through the eccentric loading analysis.Compared with the numerical results,it can be concluded that the effectiveness of calculation method of residual bearing capacity after fire exposure was proved.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50323005)the National Basic Research Program of China (Grant No. 2001CB409603)
文摘Lining materials are widely used in buildings to cover walls and ceilings. Combustible linings may produce a potential high fire hazard in buildings. Once ignited,it propagates fire and accelerates the enclosure fire growth. Two types of lining materials were studied during the tests:block board and plywood. The test was conducted in an ISO 9705 room,where linings were mounted on walls without the ceiling. By changing the heat output of the burner,the ventilation,etc.,the concentrations of CO2/CO of different lining materials were researched. The effect of test conditions on the production of CO2/CO of different lining materials was investigated,and useful experimental data were provided for the further development of numerical modeling to simulate enclosure fire growth lined with combusti-ble materials.
文摘为探明火灾下活性粉末混凝土(Receative power concrete,RPC)梁斜截面承载性能退化规律,设计制作了六根RPC简支梁试件,开展了恒载下ISO834标准火灾试验,获得了时间-位移曲线、荷载-位移曲线、内部温度变化、裂缝开展、破坏形态、高温爆裂等数据,分析了剪跨比、荷载水平、配箍率、纵筋配筋率对火灾下RPC梁斜截面承载性能的影响规律。结果表明:剪跨比、荷载水平是影响RPC梁斜截面耐火极限的关键因素,剪跨比由2.5增至3.5,荷载水平由0.25增至0.45,RPC梁耐火极限可降低30 min以上;配箍率对RPC梁的斜截面承载力和耐火极限影响显著;纵筋配筋率对RPC梁耐火极限影响甚微。火灾高温、爆裂削弱了RPC梁的斜截面承载性能,爆裂导致内部材料直接受火,加速其力学性能劣化,使梁斜截面承载力降低33.5%以上。该研究可为火灾下RPC梁斜截面承载安全及火灾后加固修复提供参考。
文摘To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load test and the other two for the one-side fire tests.Besides,temperature probe points were set on the sandwich walls to obtain the temperature distribution.Meanwhile,the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent.The temperature distribution and performance reduction of materials were also considered.The residual bearing capacity of specimens after fire exposure were simulated considering the effects of web spacing,wall panel thickness and fire exposure time.Because the sandwich wall panels were stressed by eccentric compression after a fire,the residual compressive strength of the wall panel after the fire can be calculated through the eccentric loading analysis.Compared with the numerical results,it can be concluded that the effectiveness of calculation method of residual bearing capacity after fire exposure was proved.