We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5...We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.展开更多
Medium density fiberboard (MDF) is a highly competitive wooden material especially in office furniture industry. Damage and failure occur frequently in MDF due to low mechanical properties. In the present work, a modi...Medium density fiberboard (MDF) is a highly competitive wooden material especially in office furniture industry. Damage and failure occur frequently in MDF due to low mechanical properties. In the present work, a modification was performed to enhance fracture properties of MDF. The MDF plate/core was inserted into two layers (face sheet) of glass fiber composite laminates using hand layup technique. Face sheet/core delamination involves the separation of a face sheet from the core material in a sandwich MDF. Therefore, delamination test using double cantilever beam (DCB) specimen was carried out. The test measured the debonding fracture toughness (GIC) or separation strength between face sheet material (glass fiber/epoxy laminates) with MDF core material. The test is based on compliance strategy measuring fracture toughness (GIC). It was found that the fracture toughness was increased. Extended finite element model (XFEM) based on virtual crack closer technique (VCCT) was constructed to simulate the delamination behaviors of face sheet/core materials. The model results were in good agreement with the experimental ones.展开更多
基金conducted as a joint research projectfinanced by SRTTU(Iran)UPM(Malaysia)
文摘We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.
文摘Medium density fiberboard (MDF) is a highly competitive wooden material especially in office furniture industry. Damage and failure occur frequently in MDF due to low mechanical properties. In the present work, a modification was performed to enhance fracture properties of MDF. The MDF plate/core was inserted into two layers (face sheet) of glass fiber composite laminates using hand layup technique. Face sheet/core delamination involves the separation of a face sheet from the core material in a sandwich MDF. Therefore, delamination test using double cantilever beam (DCB) specimen was carried out. The test measured the debonding fracture toughness (GIC) or separation strength between face sheet material (glass fiber/epoxy laminates) with MDF core material. The test is based on compliance strategy measuring fracture toughness (GIC). It was found that the fracture toughness was increased. Extended finite element model (XFEM) based on virtual crack closer technique (VCCT) was constructed to simulate the delamination behaviors of face sheet/core materials. The model results were in good agreement with the experimental ones.