期刊文献+
共找到1,360篇文章
< 1 2 68 >
每页显示 20 50 100
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
1
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm support vector machine Feature extraction RECOGNITION
下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
2
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
下载PDF
Optimized Complex Power Quality Classifier Using One vs. Rest Support Vector Machines 被引量:1
3
作者 David De Yong Sudipto Bhowmik Fernando Magnago 《Energy and Power Engineering》 2017年第10期568-587,共20页
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power ... Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances. 展开更多
关键词 Complex Power Quality Optimal Feature Selection ONE vs. REST support vector machine Learning algorithms WAVELET Transform Pattern Recognition
下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
4
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting FRUIT FLY optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
下载PDF
Adjustable entropy function method for support vector machine 被引量:4
5
作者 Wu Qing Liu Sanyang Zhang Leyou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1029-1034,共6页
Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the... Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 OPTIMIZATION support vector machine adjustable entropy function Newton algorithm.
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
6
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
7
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 FUZZY support vector machine FUZZY clustering SAMPLE WEIGHT GENETIC algorithm parameter optimization FAULT diagnosis
下载PDF
Intelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines 被引量:2
8
作者 Sheng Ding Li Chen 《Intelligent Information Management》 2010年第6期354-364,共11页
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM... Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data. 展开更多
关键词 support vector machine (SVM) GENETIC algorithm (GA) Particle SWARM OPTIMIZATION (PSO) Feature Selection OPTIMIZATION
下载PDF
On-line Chatter Detection Using an Improved Support Vector Machine 被引量:1
9
作者 Changfu LIU Wenxiang ZHANG 《Instrumentation》 2019年第2期2-7,共6页
On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on ... On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach. 展开更多
关键词 ON-LINE Chatter DETECTION support vector machine PARAMETER Optimization GENETIC algorithms
下载PDF
Hybrid Optimization of Support Vector Machine for Intrusion Detection
10
作者 席福利 郁松年 +1 位作者 HAO Wei 《Journal of Donghua University(English Edition)》 EI CAS 2005年第3期51-56,共6页
Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques.... Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further. 展开更多
关键词 intrusion detection system IDS) support vector machine SVM) genetic algorithm GA system call trace ξα-estimator sequential minimal optimization(SMO)
下载PDF
Mango Pest Detection Using Entropy-ELM with Whale Optimization Algorithm 被引量:2
11
作者 U.Muthaiah S.Chitra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3447-3458,共12页
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar... Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems. 展开更多
关键词 Whale optimization algorithm Entropy-ELM feature selection pests detection support vector machine mango trees classification
下载PDF
基于轴箱垂向振动加速度的地铁车轮失圆状态诊断方法 被引量:2
12
作者 梁红琴 姜进南 +5 位作者 陶功权 刘奇锋 卢纯 温泽峰 张楷 肖乾 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期431-443,共13页
首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形... 首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形磨耗幅值之间的映射关系;最后,通过智能优化算法逆向求解幅值,对比不同代理模型和智能优化算法在多边形磨耗幅值识别上的适用性。研究结果表明:1DCNN-SVM模型在正常、低阶多边形、高阶多边形、随机非圆车轮4类典型的车轮不圆度状态分类识别中取得99.82%的准确性,相比另外3种分类方法,其泛化性能和强化学习能力都具有明显的优势。在车轮多边形磨耗幅值识别方面,基于克里金模型(KSM)和粒子群算法(PSO)的波深识别模型具有更好的预测稳定性和时效性。 展开更多
关键词 车轮多边形磨耗 卷积神经网络 支持向量机 代理模型 智能优化算法
下载PDF
基于特征融合和B-SVM的鸟鸣声识别算法 被引量:1
13
作者 陈晓 曾昭优 《声学技术》 CSCD 北大核心 2024年第1期119-126,共8页
为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。... 为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。利用黑寡妇算法通过测试集对支持向量机模型的核参数和损失值进行优化得到B-SVM模型。利用Xeno-canto鸟鸣声数据集对本文算法进行了测试,结果表明该方法的识别准确率为93.23%。算法维度参数的大小和融合特征维度的高低是影响算法识别效果的重要因素。在相同条件下,文中所提的基于特征融合和B-SVM模型的鸟鸣声识别算法相较于其他特征参数和模型,识别的准确率更高,为野外鸟类识别提供了参考。 展开更多
关键词 鸟鸣声识别 梅尔频率倒谱系数 线性判别算法 黑寡妇优化算法 支持向量机
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
14
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
下载PDF
基于VMD-IMPA-SVM的超短期风电功率预测 被引量:2
15
作者 刘金朋 邓嘉明 +2 位作者 高鹏宇 刘胡诗涵 孙思源 《智慧电力》 北大核心 2024年第7期24-31,79,共9页
针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪... 针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪处理;运用对立学习和柯西变异等方法改进MPA的种群生成与变异方式,得到改进MPA(IMPA)并优化SVM中的核参数与惩罚参数,进而构建VMD-IMPA-SVM组合预测模型,对各子序列进行预测并叠加得到最终预测值。实际算例分析表明,所提组合预测模型具有较高的预测精度,同时具备强鲁棒性。 展开更多
关键词 风电功率预测 变模态分解 海洋捕食者算法 支持向量机 灰狼优化算法
下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:3
16
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
下载PDF
基于改进SVM算法的电力工程异常数据检测方法设计 被引量:1
17
作者 王楠 周鑫 +2 位作者 周云浩 苏世凯 王增亮 《电子设计工程》 2024年第4期162-166,共5页
针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入A... 针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入AdaBoost分类器,来改善支持向量机弱特征分类能力较差的不足。为进一步提高准确度,还使用鲸鱼算法对模型惩罚项、核函数及迭代次数进行优化。在实验测试中,所提算法的检测准确度相较其他三种对比算法分别提升了5.35%、2.17%和5.35%,说明该算法具备更为理想的性能,并可有效提升电力工程数据检测的准确度,故能为电力基建工程验收与管理提供数据支撑。 展开更多
关键词 支持向量机 ADABOOST算法 鲸鱼优化算法 二叉树结构 异常数据分析
下载PDF
基于高维混合模型的离心泵叶轮子午面优化设计
18
作者 张金凤 俞鑫厚 +2 位作者 高淑瑜 曹璞钰 张文佳 《排灌机械工程学报》 CSCD 北大核心 2024年第4期325-332,共8页
为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此... 为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此基础上采用获取的训练集通过MATLAB机器学习得出效率、扬程与优化参数之间关于支持向量回归的高维模型,并采用遗传算法寻优.在设计工况下,所拟合的高维混合模型预测的效率和扬程值比原模型分别高1.5%和3.2 m,数值模拟验证优化方案的效率和扬程分别比原模型高0.9%和2.1 m.算例研究表明,将高维混合模型应用于离心泵叶轮的优化设计中可以实现快速寻优并提高离心泵水力性能. 展开更多
关键词 离心泵 遗传算法 优化设计 支持向量机 混合模型 数值模拟
下载PDF
基于IAOA-SVM模型结构时变可靠性研究
19
作者 郑建校 张小康 +1 位作者 王亮亮 张锦华 《安徽理工大学学报(自然科学版)》 CAS 2024年第3期7-14,共8页
目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变... 目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变可靠性研究的方法,结合IAOA-SVM模型和极值理论,以某塔式起重机回转支承为研究对象,对其进行动态确定性分析获取样本数据,建立IAOA-SVM可靠性模型,采用蒙特卡洛法求解得到其可靠度结果,并与EKM和ERSM算法对比分析其仿真精度和效率。结果当回转支承径向变形许用值为0.278×10^(-3)m时,采用蒙特卡洛法求解得到其可靠度为99.68%,IAOA-SVM模型相比EKM和ERSM方法仿真效率有所提升,建模精度分别提高了10.42%和9.23%。结论IAOA-SVM方法在建模和仿真精度与效率方面具有较明显的优势,IAOA-SVM方法为求解机构时变可靠度难题提供了一种新的解决思路。 展开更多
关键词 时变可靠性 支持向量机 算术优化算法 回转支承
下载PDF
参数优化的IZOA-SVM机械设备故障诊断方法
20
作者 赵月静 邢天祥 秦志英 《机电工程》 CAS 北大核心 2024年第10期1894-1902,共9页
在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西... 在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西变异和反向学习的改进策略到斑马优化算法(ZOA)中,提出了改进的斑马优化算法(IZOA),旨在改善原有斑马优化算法在迭代后期容易陷入局部极值等问题,从而有效增强了其全局搜索能力;其次,利用IZOA优化支持向量机(SVM)的核参数g和惩罚参数c以寻找SVM最优参数组合[c,g],并构建了IZOA-SVM模型;然后,计算了样本的13个时域特征以构成特征向量,并将特征向量分别输入到IZOA-SVM模型、斑马优化算法优化支持向量机(ZOA-SVM)模型、粒子群算法优化支持向量机(PSO-SVM)模型、遗传算法优化支持向量机(GA-SVM)模型和支持向量机模型,进行了故障分类;最后,通过旋转机械振动及故障模拟试验验证了该方法的有效性。研究结果表明:IZOA-SVM模型在分类准确率方面得到了明显的提高,达到了98.33%;该模型能够精准而稳定地识别故障类型,提高故障识别的准确性,在准确率方面相较于其他对比方法表现出更为显著的优势。因此,该方法在全局搜索和故障分类准确性方面都取得了明显的改进,为复杂环境下的故障诊断提供了可参考的解决方案。 展开更多
关键词 机械设备 旋转机械 故障诊断 改进斑马优化算法 柯西变异 反向学习 支持向量机
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部