Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds t...Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.展开更多
We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second...We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] ...In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
The purpose of this paper is to establish a formula of higher derivative by Faà di Bruno formula, and apply it to some known results to get some identities involving complete Bell polynomials.
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the ...Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”展开更多
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for th...This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials.These two classes generalize the two celebrated non-symmetric classes of polynomials,namely,Chebyshev polynomials of third-and fourth-kinds.The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials.The derived formulas serve in converting the even-order linear differential equations with their boundary conditions into linear systems that can be efficiently solved.Furthermore,and based on the first-order derivatives formula of certain Jacobi polynomials,the operational matrix of derivatives is extracted and employed to present another algorithm to treat both linear and nonlinear two-point boundary value problems based on the application of the collocation method.Convergence analysis of the proposed expansions is investigated.Some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.展开更多
We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and o...The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and obtained many interesting results.With this in mind,in this paper,we introduce the degenerate r-Dowling polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind.We derive many interesting properties and identities for them including generating functions,Dobinski-like formula,integral representations,recurrence relations,differential equation and various explicit expressions.In addition,we explore some expressions for them that can be derived from repeated applications of certain operators to the exponential functions,the derivatives of them and some identities involving them.展开更多
In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and t...In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and the relationship between special polynomials and numbers.Also,we introduce modified degenerate unipolyCauchy polynomials of the second kind and derive some fruitful properties of these polynomials.In addition,positive associated beautiful zeros and graphical representations are displayed with the help of Mathematica.展开更多
The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan...The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.展开更多
The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with ...The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.展开更多
Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all...Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all p∈Q n, s*p∈Q n , where * denotes the Hadamard product. Some properties for W n and Q n are obtained.展开更多
Let Q be the class of real coefficient polynomials of degree 2 with positive real part in the unit disk and constant term equal to 1. aam coefficient region of polynomials in Q is found and some sharp coefficient esti...Let Q be the class of real coefficient polynomials of degree 2 with positive real part in the unit disk and constant term equal to 1. aam coefficient region of polynomials in Q is found and some sharp coefficient estimates for the polynomials with positive real part in the unit disk are established in this paper.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
We study the value distribution of difference polynomials of meromorphic functions, and extend classical theorems of Tumura-Clunie type to difference polynomials. We also consider the value distribution of f(z)f(z ...We study the value distribution of difference polynomials of meromorphic functions, and extend classical theorems of Tumura-Clunie type to difference polynomials. We also consider the value distribution of f(z)f(z + c).展开更多
文摘Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(No.2020R1F1A1A01071564).
文摘We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金Supported by the National Natural Science Foundation of China(Grant No.11601543,No.11601216,11701257)Supported by the NSF of Henan Province under Grant(No.172102410069)+1 种基金Supported by the NSF of Education Bureau of Henan Province under Grant(No.16B110009,18A110025)Supported by the Youth Foundation of Luoyang Normal university under Grant(No.2013-QNJJ-001)
文摘The purpose of this paper is to establish a formula of higher derivative by Faà di Bruno formula, and apply it to some known results to get some identities involving complete Bell polynomials.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.
文摘This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems.For this purpose,we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials.These two classes generalize the two celebrated non-symmetric classes of polynomials,namely,Chebyshev polynomials of third-and fourth-kinds.The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials.The derived formulas serve in converting the even-order linear differential equations with their boundary conditions into linear systems that can be efficiently solved.Furthermore,and based on the first-order derivatives formula of certain Jacobi polynomials,the operational matrix of derivatives is extracted and employed to present another algorithm to treat both linear and nonlinear two-point boundary value problems based on the application of the collocation method.Convergence analysis of the proposed expansions is investigated.Some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.
文摘We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
基金supported by the Basic Science Research Program,the National Research Foundation of Korea(NRF-2021R1F1A1050151).
文摘The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and obtained many interesting results.With this in mind,in this paper,we introduce the degenerate r-Dowling polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind.We derive many interesting properties and identities for them including generating functions,Dobinski-like formula,integral representations,recurrence relations,differential equation and various explicit expressions.In addition,we explore some expressions for them that can be derived from repeated applications of certain operators to the exponential functions,the derivatives of them and some identities involving them.
基金supported by the Taif University Researchers Supporting Project(TURSP-2020/246),Taif University,Taif,Saudi Arabia.
文摘In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and the relationship between special polynomials and numbers.Also,we introduce modified degenerate unipolyCauchy polynomials of the second kind and derive some fruitful properties of these polynomials.In addition,positive associated beautiful zeros and graphical representations are displayed with the help of Mathematica.
文摘The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.
文摘The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed. Under the condition that one extreme of the edge is stable, the stability radius of edge polynomials with variable length is characterized in terms of the real spectral radius of the matrix H -1 ( f 0) H (g) , where both H (f 0) and H (g) are Hurwitz like matrices. Based on this result, stability radius of control systems with interval type plants and first order controllers are determined.
文摘Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all p∈Q n, s*p∈Q n , where * denotes the Hadamard product. Some properties for W n and Q n are obtained.
文摘Let Q be the class of real coefficient polynomials of degree 2 with positive real part in the unit disk and constant term equal to 1. aam coefficient region of polynomials in Q is found and some sharp coefficient estimates for the polynomials with positive real part in the unit disk are established in this paper.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
基金supported by the National Natural Science Foundation of China (10871076)
文摘We study the value distribution of difference polynomials of meromorphic functions, and extend classical theorems of Tumura-Clunie type to difference polynomials. We also consider the value distribution of f(z)f(z + c).