To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and...Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.展开更多
The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay cha...The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay chaotic circuit based on fractional order memristive system was proposed.Some dynamical properties,including equilibrium points,stability,bifurcation,and Lyapunov exponent of the oscillator,were investigated in detail by theoretical analyses and simulations.Moreover,the nonlinear phenomena of coexisting bifurcation and attractor was found.The phenomenon shows that the state of this oscilator was highly sensitive to its initial value,which is called coexistent oscillation in this paper.Finally,the results of the system circuit simulation accomplished by Multisim were perfectly consistent with theoretical analyses and numerical simulation.展开更多
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w...In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.展开更多
As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field...As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.展开更多
Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for f...Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for fractional time⁃delay system was proposed.In addition,Lyapunov stability theorem was used to analyze the control scheme theoretically,which guaranteed the stability of commensurate and non⁃commensurate order systems with or without uncertainties and disturbances.Furthermore,to illustrate the feasibility of controller,the conditions for designing the controller parameters were derived.Finally,the simulation results presented the effectiveness of the designed strategy.展开更多
The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n tim...The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality techniq...This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.展开更多
This paper is concerned with the sustained periodic oscillation phenomenon in a threespecies delayed predation system with Holling type II functional response and age structure in top predator.The top predator fertili...This paper is concerned with the sustained periodic oscillation phenomenon in a threespecies delayed predation system with Holling type II functional response and age structure in top predator.The top predator fertility function is regarded as a piecewise continuous smooth function with regard to their maturation period T2.The complicated dynamic behavior is proved by integrated semigroup theory and Hopf bifurcation theorem for semilinear equations with non-dense domain.Through qualitative analysis and bifurcation study of the system,we yield that this system has a nontrivial periodic solution that bifurcates from the positive equilibrium age distribution when bifurcation parameter T passes through some critical values.Numerical simulations are also provided to illustrate theoretically analytical results.展开更多
This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhan...This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.展开更多
An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negati...An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negative impact of the driver's multiple delays(i.e.,stability condition is not satisfied),a novel control strategy is proposed to assist the driver in adjusting vehicle operation.The control strategy consists of two parts:the design of control term as well as the design of the parameters in the term.Bifurcation analysis is performed to illustrate the necessity of the design of parameters in control terms.In the course of the design of parameters in the control term,we improve the definite integral stability method to reduce the iterations by incorporating the characteristics of bifurcation,which can determine the appropriate parameters in the control terms more quickly.Finally,in the case study,we validate the control strategy by utilizing measured data and configuring scenario,which is closer to the actual traffic.The results of validation show that the control strategy can effectively stabilize the unstable traffic flow caused by driver's delays.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (...Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of展开更多
Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the comp...Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.展开更多
The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS...The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.展开更多
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ...Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.展开更多
The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for im...The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. This paper proposes a new discretization method for calculating a sampled-data representation of nonlinear time-delayed non-affine systems. The proposed scheme provides a finite-dimensional representation for nonlinear systems with non-a^ne time-delayed input enabling existing nonlinear controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated by using a nonlinear system with non-affine time-delayed input. For this nonlinear system, various time delay values are considered.展开更多
This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time dela...This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.展开更多
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
基金National Science Foundation of China (60274032) SRFDP (20030248040) SRSP (04QMH1405)
文摘Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
基金the National Natural Science Foundation of China(Grant No.61201227).
文摘The integer order memristive time delay chaotic system has attracted much attention and has been well discussed.However,the fractional order system is closer to the real system.In this paper,a nonlinear time delay chaotic circuit based on fractional order memristive system was proposed.Some dynamical properties,including equilibrium points,stability,bifurcation,and Lyapunov exponent of the oscillator,were investigated in detail by theoretical analyses and simulations.Moreover,the nonlinear phenomena of coexisting bifurcation and attractor was found.The phenomenon shows that the state of this oscilator was highly sensitive to its initial value,which is called coexistent oscillation in this paper.Finally,the results of the system circuit simulation accomplished by Multisim were perfectly consistent with theoretical analyses and numerical simulation.
基金supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003)the Science and Technology Project of Jiangxi Education Department(GJJ180354).
文摘In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science the Foundation of Anhui Province(Grant No.1208085M F93)the 211 Innovation Team of Anhui University(Grant Nos.KJTD007A and KJTD001B)
文摘As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science Foundation of Anhui Province(No.1208085M F93)the 211 Innovation Team of Anhui University(Nos.KJTD007A and KJTD001B).
文摘Based on Lyapunov theorem and sliding mode control scheme,the chaos control of fractional memristor chaotic time⁃delay system was studied.In order to stabilize the system,a fractional sliding mode control method for fractional time⁃delay system was proposed.In addition,Lyapunov stability theorem was used to analyze the control scheme theoretically,which guaranteed the stability of commensurate and non⁃commensurate order systems with or without uncertainties and disturbances.Furthermore,to illustrate the feasibility of controller,the conditions for designing the controller parameters were derived.Finally,the simulation results presented the effectiveness of the designed strategy.
文摘The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.
文摘This paper is concerned with the sustained periodic oscillation phenomenon in a threespecies delayed predation system with Holling type II functional response and age structure in top predator.The top predator fertility function is regarded as a piecewise continuous smooth function with regard to their maturation period T2.The complicated dynamic behavior is proved by integrated semigroup theory and Hopf bifurcation theorem for semilinear equations with non-dense domain.Through qualitative analysis and bifurcation study of the system,we yield that this system has a nontrivial periodic solution that bifurcates from the positive equilibrium age distribution when bifurcation parameter T passes through some critical values.Numerical simulations are also provided to illustrate theoretically analytical results.
文摘This paper addresses a unified approach of the PID controller design for low as well as high order unstable processes with time delay.The design method is based on the direct synthesis(DS)approach to achieve the enhanced load disturbance rejection.To improve the servo response,a two-degree of freedom control scheme has been considered.A suitable guideline has been provided to select the desired reference model in the DS scheme.The direct synthesis controller has been approximated to the PID controller using the frequency response matching method.A consistently better performance has been obtained in comparison with the recently reported methods.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)+1 种基金the National Key Research and Development Program of China–Traffic Modeling,Surveillance and Control with Connected&Automated Vehicles(Grant No.2017YFE9134700)the K.C.Wong Magna Fund in Ningbo University,China。
文摘An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negative impact of the driver's multiple delays(i.e.,stability condition is not satisfied),a novel control strategy is proposed to assist the driver in adjusting vehicle operation.The control strategy consists of two parts:the design of control term as well as the design of the parameters in the term.Bifurcation analysis is performed to illustrate the necessity of the design of parameters in control terms.In the course of the design of parameters in the control term,we improve the definite integral stability method to reduce the iterations by incorporating the characteristics of bifurcation,which can determine the appropriate parameters in the control terms more quickly.Finally,in the case study,we validate the control strategy by utilizing measured data and configuring scenario,which is closer to the actual traffic.The results of validation show that the control strategy can effectively stabilize the unstable traffic flow caused by driver's delays.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
文摘Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A208)
文摘Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.
基金supported by the National Natural Science Foundation of China (60372081)China Postdoctoral Science Foundation (20070410347)the Doctor Startup Fund of Liaoning Province (20071076)
文摘The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521065)
文摘Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
基金supported by University Natural Science Research Project of Jiangsu Province (No. 10KJB510001)
文摘The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. This paper proposes a new discretization method for calculating a sampled-data representation of nonlinear time-delayed non-affine systems. The proposed scheme provides a finite-dimensional representation for nonlinear systems with non-a^ne time-delayed input enabling existing nonlinear controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated by using a nonlinear system with non-affine time-delayed input. For this nonlinear system, various time delay values are considered.
基金National Natural Science Foundation of China (No.60674088)
文摘This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.