期刊文献+
共找到129,546篇文章
< 1 2 250 >
每页显示 20 50 100
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion 被引量:4
1
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure Shear strength
下载PDF
Enhancing the Interaction of Carbon Nanotubes by Metal-Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance 被引量:3
2
作者 Yu-Ying Shi Si-Yuan Liao +7 位作者 Qiao-Feng Wang Xin-Yun Xu Xiao-Yun Wang Xin-Yin Gu You-Gen Hu Peng-Li Zhu Rong Sun Yan-Jun Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期281-294,共14页
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ... The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices. 展开更多
关键词 EMI shielding Mechanical strength Carbon nanotubes Metal-organic decomposition Flexibility
下载PDF
Investigation of anisotropic strength criteria for layered rock mass 被引量:1
3
作者 Shuling Huang Jinxin Zhang +4 位作者 Xiuli Ding Chuanqing Zhang Gang Han Guoqi Yu Lulu Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1289-1304,共16页
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh... Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks. 展开更多
关键词 Layered rock strength anisotropy strength criterion Experimental verification
下载PDF
Prediction models of burst strength degradation for casing with considerations of both wear and corrosion 被引量:2
4
作者 Jie-Li Wang Wen-Jun Huang De-Li Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期458-474,共17页
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion... Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation. 展开更多
关键词 Deep well Casing integrity Casing wear Casing corrosion Burst strength
下载PDF
Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc‑Ion Batteries 被引量:2
5
作者 Yuting Xia Rongao Tong +5 位作者 Jingxi Zhang Mingjie Xu Gang Shao Hailong Wang Yanhao Dong Chang‑An Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期41-55,共15页
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be... Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries. 展开更多
关键词 Aqueous zinc-ion batteries Electrolyte additives DTPA-Na Chelation strength
下载PDF
Estradiol increases cortical and trabecular bone accrual and bone strength in an adolescent male-to-female mouse model of gender-affirming hormone therapy 被引量:1
6
作者 Tian Nie Varun S.Venkatesh +7 位作者 Suzanne Golub Kathryn S.Stok Haniyeh Hemmatian Reena Desai David J.Handelsman Jeffrey D.Zajac Mathis Grossmann Rachel A.Davey 《Bone Research》 SCIE CAS CSCD 2024年第1期95-106,共12页
The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown.To address this knowledge gap,we developed a mouse model to simulate male... The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown.To address this knowledge gap,we developed a mouse model to simulate male-to-female transition in human adolescents in whom puberty is first arrested by using gonadotrophin-releasing hormone analogs with subsequent estradiol treatment.Puberty was suppressed by orchidectomy in male mice at 5 weeks of age.At 3 weeks post-surgery,male-to-female mice were treated with a high dose of estradiol(~0.85 mg)by intraperitoneal silastic implantation for 12 weeks.Controls included intact and orchidectomized males at 3 weeks post-surgery,vehicle-treated intact males,intact females and orchidectomized males at 12 weeks post-treatment.Compared to male controls,orchidectomized males exhibited decreased peak bone mass accrual and a decreased maximal force the bone could withstand prior to fracture.Estradiol treatment in orchidectomized male-to-female mice compared to mice in all control groups was associated with an increased cortical thickness in the mid-diaphysis,while the periosteal circumference increased to a level that was intermediate between intact male and female controls,resulting in increased maximal force and stiffness.In trabecular bone,estradiol treatment increased newly formed trabeculae arising from the growth plate as well as mineralizing surface/bone surface and bone formation rate,consistent with the anabolic action of estradiol on osteoblast proliferation.These data support the concept that skeletal integrity can be preserved and that long-term fractures may be prevented in trans girls treated with GnRHa and a sufficiently high dose of GAHT.Further study is needed to identify an optimal dose of estradiol that protects the bone without adverse side effects. 展开更多
关键词 TREATMENT TREATMENT strength
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
7
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
下载PDF
The influence of resistance exercise training prescription variables on skeletal muscle mass,strength,and physical function in healthy adults:An umbrella review 被引量:1
8
作者 Jonathan C.Mcleod Brad S.Currier +1 位作者 Caroline V.Lowisz Stuart M.Phillips 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期47-60,共14页
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ... Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy. 展开更多
关键词 HYPERTROPHY Resistance training Resistance training prescription variables strength Umbrella review
下载PDF
Dual nanoprecipitation and nanoscale chemical heterogeneity in a secondary hardening steel for ultrahigh strength and large uniform elongation 被引量:1
9
作者 Shidong Wang Jinhua Wang +12 位作者 Shijie Zhang Daixiu Wei Yang Chen Xuequan Rong Wu Gong Stefanus Harjo Xiaochun Liu Zengbao Jiao Zhigang Yang Gang Sha Chunxu Wang Guang Chen Hao Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期245-258,共14页
Nanoprecipitates and nanoscale retained austenite(RA)with suitable stability play crucial roles in deter-mining the yield strength(YS)and ductility of ultrahigh strength steels(UHSSs).However,owing to the kinetics inc... Nanoprecipitates and nanoscale retained austenite(RA)with suitable stability play crucial roles in deter-mining the yield strength(YS)and ductility of ultrahigh strength steels(UHSSs).However,owing to the kinetics incompatibility between nanoprecipitation and austenite reversion,it is highly challenging to si-multaneously introduce high-density nanoprecipitates and optimized RA in UHSSs.In this work,through the combination of austenite reversion treatment(ART)and subsequent flash austenitizing(FA),nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process.This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase.The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn)and(Mo,Cr)_(2)C and nanoscale austenite stabilized via Mn and Ni enrichment.The hard martensitic matrix strengthened by high-density dual-nanoprecipitates con-strains the plastic deformation of soft RA with a relatively low fraction of-15%,and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity(TRIP)effect.As a result,the newly-developed UHSS exhibits an ultrahigh YS of-1.7 GPa,an ultimate tensile strength(UTS)of-1.8 GPa,a large uniform elongation(UE)of-8.5%,and a total elongation(TE)of-13%.The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys. 展开更多
关键词 Ultrahigh strength steels Dual-nanoprecipitation Austenite stability TRIP effect Phase transformation
原文传递
Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models:A Cross-sectional Study in Rural Guangxi 被引量:1
10
作者 LIANG Yu Jian RONG Jia Hui +15 位作者 WANG Xue Xiu CAI Jian Sheng QIN Li Dong LIU Qiu Mei TANG Xu MO Xiao Ting WEI Yan Fei LIN Yin Xia HUANG Shen Xiang LUO Ting Yu GOU Ruo Yu CAO Jie Jing HUANG Chu Wu LU Yu Fu QIN Jian ZHANG Zhi Yong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期3-18,共16页
Objective This study aimed to investigate the potential relationship between urinary metals copper(Cu),arsenic(As),strontium(Sr),barium(Ba),iron(Fe),lead(Pb)and manganese(Mn)and grip strength.Methods We used linear re... Objective This study aimed to investigate the potential relationship between urinary metals copper(Cu),arsenic(As),strontium(Sr),barium(Ba),iron(Fe),lead(Pb)and manganese(Mn)and grip strength.Methods We used linear regression models,quantile g-computation and Bayesian kernel machine regression(BKMR)to assess the relationship between metals and grip strength.Results In the multimetal linear regression,Cu(β=−2.119),As(β=−1.318),Sr(β=−2.480),Ba(β=0.781),Fe(β=1.130)and Mn(β=−0.404)were significantly correlated with grip strength(P<0.05).The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was−1.007(95%confidence interval:−1.362,−0.652;P<0.001)when each quartile of the mixture of the seven metals was increased.Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength,with Cu,As and Sr being negatively associated with grip strength levels.In the total population,potential interactions were observed between As and Mn and between Cu and Mn(P_(interactions) of 0.003 and 0.018,respectively).Conclusion In summary,this study suggests that combined exposure to metal mixtures is negatively associated with grip strength.Cu,Sr and As were negatively correlated with grip strength levels,and there were potential interactions between As and Mn and between Cu and Mn. 展开更多
关键词 Urinary metals Handgrip strength Quantile g-computation Bayesian kernel machine regression
下载PDF
Muscle strength and non-alcoholic fatty liver disease/metabolicassociated fatty liver disease 被引量:2
11
作者 Xuan-Yu Hao Kai Zhang +2 位作者 Xing-Yong Huang Fei Yang Si-Yu Sun 《World Journal of Gastroenterology》 SCIE CAS 2024年第7期636-643,共8页
This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwid... This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity. 展开更多
关键词 Muscle strength Non-alcoholic fatty liver disease Metabolic-associated fatty liver disease SARCOPENIA Insulin resistance INFLAMMATION
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
12
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment 被引量:1
13
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
14
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 Concrete dam Buttress dam SLIDING Shear strength Concrete-rock interface Asperity inclination Asperity location
下载PDF
Method for evaluation of geological strength index of carbonate cliff rocks:Coupled hyperspectral-digital borehole image technique 被引量:1
15
作者 Haiqing Yang Guizhong Huang +3 位作者 Chiwei Chen Yong Yang Qi Wang Xionghui Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4204-4215,共12页
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara... The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass. 展开更多
关键词 Hyperspectral image Digital panoramic borehole image Geological strength index Carbonate rock mass Quantitative evaluation
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression 被引量:1
16
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
17
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) Tensile strength Direct tensile test Brazilian test
下载PDF
Analysis of mechanical strengths of extreme line casing joint considering geometric, material, and contact nonlinearities
18
作者 Ji-Yun Zhang Chi Peng +4 位作者 Jian-Hong Fu Quan Cao Yu Su Jian-Yun Pang Zi-Qiang Yu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1992-2004,共13页
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve... To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint. 展开更多
关键词 Extreme line casing Elastic-plastic mechanics Finite element analysis Tensile strength Collapse strength
下载PDF
Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms
19
作者 Junjie Zhao Diyuan Li +1 位作者 Jingtai Jiang Pingkuang Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期275-304,共30页
Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining envir... Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining environments under high in-situ stress.Thus,this study aims to develop an advanced model for predicting the UCS of rockmaterial in deepmining environments by combining three boosting-basedmachine learning methods with four optimization algorithms.For this purpose,the Lead-Zinc mine in Southwest China is considered as the case study.Rock density,P-wave velocity,and point load strength index are used as input variables,and UCS is regarded as the output.Subsequently,twelve hybrid predictive models are obtained.Root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R2),and the proportion of the mean absolute percentage error less than 20%(A-20)are selected as the evaluation metrics.Experimental results showed that the hybridmodel consisting of the extreme gradient boostingmethod and the artificial bee colony algorithm(XGBoost-ABC)achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset.The values of R2,A-20,RMSE,and MAE on the training dataset are 0.98,1.0,3.11 MPa,and 2.23MPa,respectively.The highest values of R2 and A-20(0.93 and 0.96),and the smallest RMSE and MAE values of 4.78 MPa and 3.76MPa,are observed on the testing dataset.The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines. 展开更多
关键词 Uniaxial compression strength strength prediction machine learning optimization algorithm
下载PDF
Strength criterion for crystalline rocks considering grain size effect and tensile-compressive strength ratio
20
作者 ZHANG Cheng-han JI Hong-guang +3 位作者 JIANG Peng YOU Shuang GENG Qian-cheng JIAO Chen-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2365-2378,共14页
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the... The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data. 展开更多
关键词 crystalline rock grain size effect strength criterion tensile-compressive strength ratio finite element algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部