Continued smoking following stroke is associated with adverse outcomes including increased risk of mortality and secondary stroke. The aim of this study was to examine the long-term trends in smoking behaviors and fac...Continued smoking following stroke is associated with adverse outcomes including increased risk of mortality and secondary stroke. The aim of this study was to examine the long-term trends in smoking behaviors and factors associated with smoking relapse among men who survived their first-ever stroke. Data collection for this longitudinal study was conducted at baseline through face-toface interviews and follow-up was completed every 3 months via telephone, beginning in 2010 and continuing through 2014. Cox proportional hazard regression models were used to identify predictors of smoking relapse behavior. At baseline, 372 male patients were recruited into the study. Totally, 155(41.7%) of these patients stopped smoking for stroke, and 61(39.3%) began smoking again within 57 months after discharge with an increasing trend in the number of cigarettes smoked per day. Exposure to environmental tobacco smoke at places outside of home and work(such as bars, restaurants)(HR, 2.34; 95% CI, 1.04–5.29, P=0.04), not having a spouse(HR, 0.12; 95% CI, 0.04–0.36; P=0.0002) and smoking at least 20 cigarettes per day before stroke(HR, 2.42; 95% CI, 1.14–5.14, P=0.02) were predictors of smoking relapse. It was concluded that environmental tobacco smoke is an important determinant of smoking relapse among men who survive their first stroke. Environmental tobacco smoke should be addressed by smoke-free policies in public places.展开更多
BACKGROUND At present,the incidence rate of ischemic stroke in young people is increasing yearly,and the age of onset is increasingly young.Therefore,primary and secondary prevention of ischemic stroke in young people...BACKGROUND At present,the incidence rate of ischemic stroke in young people is increasing yearly,and the age of onset is increasingly young.Therefore,primary and secondary prevention of ischemic stroke in young people,especially secondary prevention,is particularly crucial.AIM We aimed to comprehensively evaluate risk factors for stroke recurrence in firstever young ischemic stroke(YIS)patients.METHODS The meta-analysis was used to quantitatively analyze the research results on risk factors for stroke recurrence in first-ever YIS patients both domestically and internationally.Stata12.0 software was used for heterogeneity testing,publication bias analysis,sensitivity analysis,and the calculation of combined odds ratios and 95%confidence intervals.RESULTS The odds ratio(OR)values of the relationship between hypertension and hyperlipidemia and recurrence of first-ever YIS were 1.54(1.05-2.26)and 1.12(1.00-1.25),respectively.The OR values of male sex,type 2 diabetes,smoking,drinking and YIS recurrence were 1.66(0.98-2.79),1.01(0.64-1.59),1.21(0.83-1.76),and 1.28(0.82-2.53),respectively.The relationship between male sex,type 2 diabetes,smoking,drinking and YIS recurrence was ambiguous.CONCLUSION Hypertension and hyperlipidemia are important risk factors for stroke recurrence in first-ever YIS patients,and active intervention should be taken.展开更多
Summary:Several studies have indicated that stroke survivors with multiple lesions or with larger lesion volumes have a higher risk of stroke recurrence.However,the relationship between lesion locations and stroke rec...Summary:Several studies have indicated that stroke survivors with multiple lesions or with larger lesion volumes have a higher risk of stroke recurrence.However,the relationship between lesion locations and stroke recurrence is unclear.We conducted a prospective cohort study of first-ever ischemic stroke survivors who were consecutively enrolled from January 2010 to December 2015.Stroke recurrence was assessed every 3 months after post-discharge via telephone interviews by trained interviewers.Lesion locations were obtained from hospital-based MRI or CT scans and classified using two classification systems that were based on cerebral hemisphere or vascular territory and brain anatomical structures.Flexible parametric survival models using the proportional hazards scale(PH model)were used to analyze the time-to-event data.Among 633 survivors,63.51%(n-402)had anterior circulation ischemia(ACI),and morc than half of all ACIs occurred in the subcortex.After a median follow-up of 2.5 years,117(18.48%)survivors developed a recurrent stroke.The results of the multivariate PH model showed that survivors with non-brain lesions were at higher risk of recurrence than those with right-side lesions(HR,2.79;95%CI,1.53,5.08;P-0.001).There was no increase in risk among survivors with left-side lesions(HR,0.97;95%CI,0.53,1.75;P=0.914)or both-side lesions(HR,1.24;95%CI,0.75,2.07;P-0.401)compared to those with right-side lesions.Additionally,there were no associations between stroke ecurrence and lesion locations that were classified based on vascular territory and brain anatomical structures.It was concluded that first-ever ischemic stroke survivors with non-brain lesion had higher recurrence risk than those with right-side lesion,although no significant associations were found when the lesion locations were classified by vascular territory and brain anatomical structures.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting...The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.E...Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions.They have low immunogenicity,good stability,high delivery efficiency,and the ability to cross the blood–brain barrier.These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke.The rapid development of nanotechnology has advanced the application of engineered exosomes,which can effectively improve targeting ability,enhance therapeutic efficacy,and minimize the dosages needed.Advances in technology have also driven clinical translational research on exosomes.In this review,we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke,including their antiinflammation,anti-apoptosis,autophagy-regulation,angiogenesis,neurogenesis,and glial scar formation reduction effects.However,it is worth noting that,despite their significant therapeutic potential,there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes.Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke.Ultimately,our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.展开更多
It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing a...It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes ...BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes in lipid profiles and dyslipidemia and ischemic stroke in a hypertensive population.METHODS Between 2013 and 2014,6094 hypertension individuals were included in this,and ischemic stroke cases were documented to the end of 2018.Longitudinal changes of lipid were stratified into four groups:(1)Normal was transformed into normal group;(2)Abnormal was transformed into normal group;(3)Normal was transformed into abnormal group;and(4)Abnormal was transformed into abnormal group.To examine the link between longitudinal changes in dyslipidemia along with its components and the risk of ischemic stroke,we utilized multivariate Cox proportional hazards models with hazard ratio(HR)and 95%CI.RESULTS The average age of the participants was 62.32 years±13.00 years,with 329 women making up 54.0%of the sample.Over the course of a mean follow-up of 4.8 years,143 ischemic strokes happened.When normal was transformed into normal group was used as a reference,after full adjustments,the HR for dyslipidemia and ischemic stroke among abnormal was transformed into normal group,normal was transformed into abnormal group and abnormal was transformed into abnormal Wei CC et al.Dyslipidemia changed and ischemic stroke WJCC https://www.wjgnet.com 2 February 6,2025 Volume 13 Issue 4 group were 1.089(95%CI:0.598-1.982;P=0.779),2.369(95%CI:1.424-3.941;P<0.001)and 1.448(95%CI:1.002-2.298;P=0.047)(P for trend was 0.233),respectively.CONCLUSION In individuals with hypertension,longitudinal shifts from normal to abnormal in dyslipidemia-particularly in total and low-density lipoprotein cholesterol-were significantly associated with the risk of ischemic stroke.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ...Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.展开更多
Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem ce...Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.展开更多
Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The prim...Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke.展开更多
Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric...Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury.Thus,transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease.To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke,in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site(in situ).Animal behavior tests,immunofluorescence staining,2,3,5-triphenyltetrazolium chloride(TTC)staining,mRNA-seq,and western blotting were used to assess mouse anxiety and memory,cortical infarct area,pyroptosis,and neurogenesis,respectively.Using bioinformatics analysis,western blotting,co-immunoprecipitation,and mass spectroscopy,we identified S100 calcium binding protein A9(S100A9)as a potential regulator of mitochondrial function and determined its possible interacting proteins.Interactions between exogenous and endogenous mitochondria,as well as the effect of exogenous mitochondria on recipient microglia,were assessed in vitro.Our data showed that:(1)mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function,as well as reducing infarct area,inhibiting pyroptosis,and promoting cortical neurogenesis;(2)microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function;(3)in vitro,exogenous mitochondria enhanced mitochondrial function,reduced redox stress,and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria;and(4)S100A9 promoted internalization of exogenous mitochondria by the microglia,thereby amplifying their pro-proliferation and anti-inflammatory effects.Taken together,our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis,and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional target...Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks.Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability.In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other.Here,we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis.We found that abnormal intestinal flora,the intestinal microenvironment,lung infection,chronic diseases,and mechanical ventilation can worsen the outcome of ischemic stroke.This review also introduces the influence of the brain on the gut and lungs after stroke,highlighting the bidirectional feedback effect among the gut,lungs,and brain.展开更多
基金supported by National Natural Science Foundation of China(No.30600511)
文摘Continued smoking following stroke is associated with adverse outcomes including increased risk of mortality and secondary stroke. The aim of this study was to examine the long-term trends in smoking behaviors and factors associated with smoking relapse among men who survived their first-ever stroke. Data collection for this longitudinal study was conducted at baseline through face-toface interviews and follow-up was completed every 3 months via telephone, beginning in 2010 and continuing through 2014. Cox proportional hazard regression models were used to identify predictors of smoking relapse behavior. At baseline, 372 male patients were recruited into the study. Totally, 155(41.7%) of these patients stopped smoking for stroke, and 61(39.3%) began smoking again within 57 months after discharge with an increasing trend in the number of cigarettes smoked per day. Exposure to environmental tobacco smoke at places outside of home and work(such as bars, restaurants)(HR, 2.34; 95% CI, 1.04–5.29, P=0.04), not having a spouse(HR, 0.12; 95% CI, 0.04–0.36; P=0.0002) and smoking at least 20 cigarettes per day before stroke(HR, 2.42; 95% CI, 1.14–5.14, P=0.02) were predictors of smoking relapse. It was concluded that environmental tobacco smoke is an important determinant of smoking relapse among men who survive their first stroke. Environmental tobacco smoke should be addressed by smoke-free policies in public places.
基金The Key Research Project of The Third People's Hospital of Hefei,No.SYKZ202301.
文摘BACKGROUND At present,the incidence rate of ischemic stroke in young people is increasing yearly,and the age of onset is increasingly young.Therefore,primary and secondary prevention of ischemic stroke in young people,especially secondary prevention,is particularly crucial.AIM We aimed to comprehensively evaluate risk factors for stroke recurrence in firstever young ischemic stroke(YIS)patients.METHODS The meta-analysis was used to quantitatively analyze the research results on risk factors for stroke recurrence in first-ever YIS patients both domestically and internationally.Stata12.0 software was used for heterogeneity testing,publication bias analysis,sensitivity analysis,and the calculation of combined odds ratios and 95%confidence intervals.RESULTS The odds ratio(OR)values of the relationship between hypertension and hyperlipidemia and recurrence of first-ever YIS were 1.54(1.05-2.26)and 1.12(1.00-1.25),respectively.The OR values of male sex,type 2 diabetes,smoking,drinking and YIS recurrence were 1.66(0.98-2.79),1.01(0.64-1.59),1.21(0.83-1.76),and 1.28(0.82-2.53),respectively.The relationship between male sex,type 2 diabetes,smoking,drinking and YIS recurrence was ambiguous.CONCLUSION Hypertension and hyperlipidemia are important risk factors for stroke recurrence in first-ever YIS patients,and active intervention should be taken.
基金This study was funded by the National Natural Science Foundation of China(No.81673273 and No.30600511).
文摘Summary:Several studies have indicated that stroke survivors with multiple lesions or with larger lesion volumes have a higher risk of stroke recurrence.However,the relationship between lesion locations and stroke recurrence is unclear.We conducted a prospective cohort study of first-ever ischemic stroke survivors who were consecutively enrolled from January 2010 to December 2015.Stroke recurrence was assessed every 3 months after post-discharge via telephone interviews by trained interviewers.Lesion locations were obtained from hospital-based MRI or CT scans and classified using two classification systems that were based on cerebral hemisphere or vascular territory and brain anatomical structures.Flexible parametric survival models using the proportional hazards scale(PH model)were used to analyze the time-to-event data.Among 633 survivors,63.51%(n-402)had anterior circulation ischemia(ACI),and morc than half of all ACIs occurred in the subcortex.After a median follow-up of 2.5 years,117(18.48%)survivors developed a recurrent stroke.The results of the multivariate PH model showed that survivors with non-brain lesions were at higher risk of recurrence than those with right-side lesions(HR,2.79;95%CI,1.53,5.08;P-0.001).There was no increase in risk among survivors with left-side lesions(HR,0.97;95%CI,0.53,1.75;P=0.914)or both-side lesions(HR,1.24;95%CI,0.75,2.07;P-0.401)compared to those with right-side lesions.Additionally,there were no associations between stroke ecurrence and lesion locations that were classified based on vascular territory and brain anatomical structures.It was concluded that first-ever ischemic stroke survivors with non-brain lesion had higher recurrence risk than those with right-side lesion,although no significant associations were found when the lesion locations were classified by vascular territory and brain anatomical structures.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金supported by the grants from the Spanish Ministry of Economy and Competitiveness(SAF2017-85602-R)the Spanish Ministry of Science and Innovation(PID2020-119638RB-I00 to EGR)FPU-program(FPU17/02616 to JCG)。
文摘The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82071291(to YY),82301464(to HM)the Norman Bethune Health Science Center of Jilin University,No.2022JBGS03(to YY)+2 种基金a grant from Department of Science and Technology of Jilin Province,Nos.YDZJ202302CXJD061(to YY),20220303002SF(to YY)a grant from Jilin Provincial Key Laboratory,No.YDZJ202302CXJD017(to YY)Talent Reserve Program of First Hospital of Jilin University,No.JDYYCB-2023002(to ZNG)。
文摘Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions.They have low immunogenicity,good stability,high delivery efficiency,and the ability to cross the blood–brain barrier.These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke.The rapid development of nanotechnology has advanced the application of engineered exosomes,which can effectively improve targeting ability,enhance therapeutic efficacy,and minimize the dosages needed.Advances in technology have also driven clinical translational research on exosomes.In this review,we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke,including their antiinflammation,anti-apoptosis,autophagy-regulation,angiogenesis,neurogenesis,and glial scar formation reduction effects.However,it is worth noting that,despite their significant therapeutic potential,there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes.Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke.Ultimately,our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
基金supported by the National Natural Science Foundation of China,Nos.82274313(to YD),82204746(to ML),82003982(to TL).
文摘It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
文摘BACKGROUND Dyslipidemia was strongly linked to stroke,however the relationship between dyslipidemia and its components and ischemic stroke remained unexplained.AIM To investigate the link between longitudinal changes in lipid profiles and dyslipidemia and ischemic stroke in a hypertensive population.METHODS Between 2013 and 2014,6094 hypertension individuals were included in this,and ischemic stroke cases were documented to the end of 2018.Longitudinal changes of lipid were stratified into four groups:(1)Normal was transformed into normal group;(2)Abnormal was transformed into normal group;(3)Normal was transformed into abnormal group;and(4)Abnormal was transformed into abnormal group.To examine the link between longitudinal changes in dyslipidemia along with its components and the risk of ischemic stroke,we utilized multivariate Cox proportional hazards models with hazard ratio(HR)and 95%CI.RESULTS The average age of the participants was 62.32 years±13.00 years,with 329 women making up 54.0%of the sample.Over the course of a mean follow-up of 4.8 years,143 ischemic strokes happened.When normal was transformed into normal group was used as a reference,after full adjustments,the HR for dyslipidemia and ischemic stroke among abnormal was transformed into normal group,normal was transformed into abnormal group and abnormal was transformed into abnormal Wei CC et al.Dyslipidemia changed and ischemic stroke WJCC https://www.wjgnet.com 2 February 6,2025 Volume 13 Issue 4 group were 1.089(95%CI:0.598-1.982;P=0.779),2.369(95%CI:1.424-3.941;P<0.001)and 1.448(95%CI:1.002-2.298;P=0.047)(P for trend was 0.233),respectively.CONCLUSION In individuals with hypertension,longitudinal shifts from normal to abnormal in dyslipidemia-particularly in total and low-density lipoprotein cholesterol-were significantly associated with the risk of ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82301486(to SL)and 82071325(to FY)Medjaden Academy&Research Foundation for Young Scientists,No.MJR202310040(to SL)+2 种基金Nanjing Medical University Science and Technique Development,No.NMUB20220060(to SL)Medical Scientific Research Project of Jiangsu Commission of Health,No.ZDA2020019(to JZ)Health China Buchang Zhiyuan Public Welfare Project for Heart and Brain Health,No.HIGHER202102(to QD).
文摘Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
基金supported by the National Nature Science Foundation of China,No.81471308(to JL)the Innovative Leading Talents of Liaoning Province,No.XLYC1902031(to JL)+2 种基金Science and Technology Projects in Liaoning Province,No.2022-BS-238(to CH)Young Top Talents of Liaoning Province,No.XLYC1907009(to LW)Dalian Science and Technology Innovation Fund,No.2018J11CY025(to JL)。
文摘Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82071339 and 82271370(both to LG).
文摘Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82201621(to LS),31930048(to QY)and 81720108016(to QY),and 81971225(to CG)the Key Research and Development Project of Shaanxi Province,No.2022SF-189(to XS)the Tangdu Hospital Supporting Foundation,Nos.2021ZTXM-006(to LS)and 2021JSZH-006(to CG)。
文摘Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury.Thus,transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease.To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke,in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site(in situ).Animal behavior tests,immunofluorescence staining,2,3,5-triphenyltetrazolium chloride(TTC)staining,mRNA-seq,and western blotting were used to assess mouse anxiety and memory,cortical infarct area,pyroptosis,and neurogenesis,respectively.Using bioinformatics analysis,western blotting,co-immunoprecipitation,and mass spectroscopy,we identified S100 calcium binding protein A9(S100A9)as a potential regulator of mitochondrial function and determined its possible interacting proteins.Interactions between exogenous and endogenous mitochondria,as well as the effect of exogenous mitochondria on recipient microglia,were assessed in vitro.Our data showed that:(1)mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function,as well as reducing infarct area,inhibiting pyroptosis,and promoting cortical neurogenesis;(2)microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function;(3)in vitro,exogenous mitochondria enhanced mitochondrial function,reduced redox stress,and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria;and(4)S100A9 promoted internalization of exogenous mitochondria by the microglia,thereby amplifying their pro-proliferation and anti-inflammatory effects.Taken together,our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis,and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82204663the Natural Science Foundation of Shandong Province,No.ZR2022QH058(both to TZ).
文摘Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks.Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability.In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other.Here,we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis.We found that abnormal intestinal flora,the intestinal microenvironment,lung infection,chronic diseases,and mechanical ventilation can worsen the outcome of ischemic stroke.This review also introduces the influence of the brain on the gut and lungs after stroke,highlighting the bidirectional feedback effect among the gut,lungs,and brain.