To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with ...To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.展开更多
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four f...Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four fitting evaluation indicators were used to verify the consistency of the new failure criterion,and the differences with the other 6 failure criteria were discussed.The characteristics of the new failure criteria in the principal stress space were finally analyzed.The results indicate that(1)the new failure criterion exhibits strong predictive ability for triaxial experiments and has good applicability for both intact and jointed rocks;(2)the influence of hydrostatic pressure on the failure surface exhibits a non-linear trend,and different hydrostatic pressure also exhibits different distribution patterns on the deviatoric stress plane,with a distribution characteristic pattern of hexagonal snowflake-regular hexagon.The maximum shear stress has a torsional effect on the new criterion,in the three-dimensional failure surface.The parameters a and b of the rock have an impact on the failure surface morphology of the new criterion function on the offset surface.展开更多
An efficient computational method is suggested for the first-excursion reliability assessment of nonstationary process. In the proposed method, the nonlinear performance function is Linearized at the Hasofer-Lind poin...An efficient computational method is suggested for the first-excursion reliability assessment of nonstationary process. In the proposed method, the nonlinear performance function is Linearized at the Hasofer-Lind point obtained by an iterative algorithm. The problem of the nonstationary processes is solved by the discrete-time method, in which the precision can be controlled by choosing the steps of discretization. The derived formulae can be conveniently degraded to calculate both the first-excursion reliability with linear performance function of stationary processes and the time-independent reliability. The suggested method is useful for the analysis of components and systems with nonstationary responses in structural design where some uncertainties are represented by a vector of nonstationary processes. Examples are given to demonstrate the fast convergency and effectiveness of the presented method.展开更多
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks ...Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.展开更多
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri...Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
The experiments and numerical simulation were conducted for ZL205A aluminum alloy cylindrical shell casting. The formation mechanism of the linear segregation produced by the low pressure die casting (LPDC) process wa...The experiments and numerical simulation were conducted for ZL205A aluminum alloy cylindrical shell casting. The formation mechanism of the linear segregation produced by the low pressure die casting (LPDC) process was investigated. And the heat transfer of the casting during solidification process was analyzed by simulation technique, resulting from the information of linear segregation obtained by plenty of experiments. The new linear segregation criterion was proposed through the simulation and experimental results. It was found that the melting metal with high Cu contents was feeding the crack shrinkage formed by the tearing under the effect of feeding pressure during the later solidification, which led to the formation of linear segregation. The control methods for the linear segregation were suggested based on the proposed mechanism. Finally, the criterion of linear segregation was confirmed by the production of the actual castings.展开更多
As one of the principal failures,ductile fracturing restricts metal forming process.Cockcroft-Latham type fracture criterion is suited for ductile fracture in bulk metal-forming simulation.Finding a way to evaluate th...As one of the principal failures,ductile fracturing restricts metal forming process.Cockcroft-Latham type fracture criterion is suited for ductile fracture in bulk metal-forming simulation.Finding a way to evaluate the ductile fracture criterion(DFC) and identify the relationship between DFC and deformation conditions for a strain-softening material,7075 aluminum alloy;however,it is a non-trivial issue that still needs to be addressed in a greater depth.An innovative approach is brought forth that the compression tests and numerical simulations provide mutual support to evaluate the ductile damage cumulating process and determine the DFC diagram.One of the results shows that for a fixed temperature,the maximum cumulated damage decreases regularly with increasing strain rate.The most important result shows that DFC of 7075 aluminum alloy at temperatures of 573-723 K and strain rates of 0.01-10 s-1 is not a constant but a change in a range of 0.255-0.453,thus it has been defined with varying ductile fracture criterion(VDFC) and characterized by a function of strain rate and temperature.According to VDFC diagram,the exact fracture moment and position during various forming processes will be predicted conveniently,in addition to which,the deformation domains with lower fracture risk corresponding to higher VDFC can be identified.展开更多
Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the tr...Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the traditional flow equations, the flow equation and the Bernoulli's equation for liquid metal flows in micro-scale space were derived, which provides a mathematical model for numerical simulation of micro-scale flow. In the meanwhile, according to the micro-flow equation and the similarity theory, the similarity criterion for the physical simulation of the mold filling behaviors was presented under centrifugal force field, so as to achieve the visual observation and quantitative analysis of micro-flow process.展开更多
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th...The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.展开更多
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ...An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.展开更多
The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we foun...The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...展开更多
To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well a...To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time-frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.展开更多
A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole infor...A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design...A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.展开更多
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51934003,52334004)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014)。
文摘To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金supported by the National Natural Science Foundation of China(Nos.52004289 and U22A20165)the Fundamental Research Funds for the Central Universities(No.2022XJNY01)。
文摘Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four fitting evaluation indicators were used to verify the consistency of the new failure criterion,and the differences with the other 6 failure criteria were discussed.The characteristics of the new failure criteria in the principal stress space were finally analyzed.The results indicate that(1)the new failure criterion exhibits strong predictive ability for triaxial experiments and has good applicability for both intact and jointed rocks;(2)the influence of hydrostatic pressure on the failure surface exhibits a non-linear trend,and different hydrostatic pressure also exhibits different distribution patterns on the deviatoric stress plane,with a distribution characteristic pattern of hexagonal snowflake-regular hexagon.The maximum shear stress has a torsional effect on the new criterion,in the three-dimensional failure surface.The parameters a and b of the rock have an impact on the failure surface morphology of the new criterion function on the offset surface.
基金The project supported by the National Natural Science Foundation of China
文摘An efficient computational method is suggested for the first-excursion reliability assessment of nonstationary process. In the proposed method, the nonlinear performance function is Linearized at the Hasofer-Lind point obtained by an iterative algorithm. The problem of the nonstationary processes is solved by the discrete-time method, in which the precision can be controlled by choosing the steps of discretization. The derived formulae can be conveniently degraded to calculate both the first-excursion reliability with linear performance function of stationary processes and the time-independent reliability. The suggested method is useful for the analysis of components and systems with nonstationary responses in structural design where some uncertainties are represented by a vector of nonstationary processes. Examples are given to demonstrate the fast convergency and effectiveness of the presented method.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
文摘Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金supported by the National Natural Science Foundation of China under Grant Nos.62273083 and 61803077Natural Science Foundation of Hebei Province under Grant No.F2020501012.
文摘Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
文摘The experiments and numerical simulation were conducted for ZL205A aluminum alloy cylindrical shell casting. The formation mechanism of the linear segregation produced by the low pressure die casting (LPDC) process was investigated. And the heat transfer of the casting during solidification process was analyzed by simulation technique, resulting from the information of linear segregation obtained by plenty of experiments. The new linear segregation criterion was proposed through the simulation and experimental results. It was found that the melting metal with high Cu contents was feeding the crack shrinkage formed by the tearing under the effect of feeding pressure during the later solidification, which led to the formation of linear segregation. The control methods for the linear segregation were suggested based on the proposed mechanism. Finally, the criterion of linear segregation was confirmed by the production of the actual castings.
基金Project(2012ZX04010081) supported by the National Key Technologies R & D Program of ChinaProject(cstc2009aa3012-1) supported by the Science and Technology Committee of Chongqing,ChinaProject(CDJZR11130009) supported by the Fundamental Research Funds for the Central Universities,China
文摘As one of the principal failures,ductile fracturing restricts metal forming process.Cockcroft-Latham type fracture criterion is suited for ductile fracture in bulk metal-forming simulation.Finding a way to evaluate the ductile fracture criterion(DFC) and identify the relationship between DFC and deformation conditions for a strain-softening material,7075 aluminum alloy;however,it is a non-trivial issue that still needs to be addressed in a greater depth.An innovative approach is brought forth that the compression tests and numerical simulations provide mutual support to evaluate the ductile damage cumulating process and determine the DFC diagram.One of the results shows that for a fixed temperature,the maximum cumulated damage decreases regularly with increasing strain rate.The most important result shows that DFC of 7075 aluminum alloy at temperatures of 573-723 K and strain rates of 0.01-10 s-1 is not a constant but a change in a range of 0.255-0.453,thus it has been defined with varying ductile fracture criterion(VDFC) and characterized by a function of strain rate and temperature.According to VDFC diagram,the exact fracture moment and position during various forming processes will be predicted conveniently,in addition to which,the deformation domains with lower fracture risk corresponding to higher VDFC can be identified.
基金Project(51005053)supported by the National Science Foundation for Young Scientists of China
文摘Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the traditional flow equations, the flow equation and the Bernoulli's equation for liquid metal flows in micro-scale space were derived, which provides a mathematical model for numerical simulation of micro-scale flow. In the meanwhile, according to the micro-flow equation and the similarity theory, the similarity criterion for the physical simulation of the mold filling behaviors was presented under centrifugal force field, so as to achieve the visual observation and quantitative analysis of micro-flow process.
基金The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010)
文摘The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
基金The National Natural Science Foundation of China(No.61105048,60972165)the Doctoral Fund of Ministry of Education of China(No.20110092120034)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK2010240)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Human Resources and Social Security of China(No.6722000008)the Open Fund of Jiangsu Province Key Laboratory for Remote Measuring and Control(No.YCCK201005)
文摘An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.
文摘The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...
基金supported by the National Science and Technology Major Project(No.2011ZX05002-004-002)the National Natural Science Foundation of China(No.41304111)+3 种基金Key Project of Science and Technology Department of Sichuan Province(No.2016JY0200)Natural Science project of Education Department of Sichuan Province(Nos.16ZB0101 and 14ZA0061)the Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2016TD0023)the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology(No.KYTD201410)
文摘To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time-frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.
文摘A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
文摘A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.