The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineral...The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineralization from organically amended upland purplish soils has been poorly studied. Therefore, this study investigates C and N mineralization kinetics in organically amended upland purplish soils. Incubation experiments were conducted using soil samples collected from experimental plots that have been under long-term organic amendment fertilization, which includes: Organic manure (OM), crop residues (CR), combined organic manure with inorganic fertilizers (OMNPK), combined crop residue with inorganic fertilizers (CRNPK), conventional inorganic fertilizer (NPK), and no fertilizer (CK). The results showed that organically amended treatments increased C and N mineralization rates by 8 - 24% and 17 - 33%, respectively, compared with NPK. Likewise, the amount of potentially mineralizable carbon (Co) and nitrogen (No) increased by 4 - 9% and 15 - 20%, respectively, compared to the conventional NPK treatment. The rate constants for labile C (kC) and N (kN) were 6 - 29% and 3 - 27% higher than the NPK treatment, respectively. In addition, the initial potential rate of C (Co × kC) and N (No × kN) in organically amended soils were 10 - 37% and 18 - 52% higher compared to NPK. This study tried to show that the mechanisms of N supply was direct application of mineral N fertilizer and mineralization of organic N, while the N retention was reducing soil active N loss and storing more active N in cropland of purplish soil. These results suggest that the long-term application of organic amendments to upland soils may increase nutrient bioavailability.展开更多
The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralizati...The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation.展开更多
The energy size relationship is examined, either as the specific energy required breaking a particulate material from an initial size d1 to a final size d2, where d is usually the d80 size, or as the specific energy r...The energy size relationship is examined, either as the specific energy required breaking a particulate material from an initial size d1 to a final size d2, where d is usually the d80 size, or as the specific energy required to break a single particle. The present work uses the results obtained using a controlled frequency centrifugal crusher to crush particles of a predetermined size class under different rotation frequencies related to the kinetic energy of the particles at the moment of crushing. The paper calculates the relationship between the rotation frequency and the kinetic energy of the particles before crushing and examines the size distribution of the products. The study results allow presenting the relationship between the kinetic energy of the particles and the mass of particles produced below the initial size class. The work also produces the optimum mathematical model that describes this relationship among three proposed ones. According to this model one can calculate the energy required breaking half of the initial mass below the initial size class and the corresponding specific energy is appointed to the average size of the class. The parameters of the mathematical model can be used to compare the grindability of the different materials. The process can be used as an alternative to the drop weight technique used so far for the study of the breakage energy of minerals and rocks.展开更多
This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)...This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages.In this study,the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate.Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model.The model calibration was then calculated by using the experimental data.The results suggested that the new model was in line with the experimental data.The main parameters of the modified FKTSR model,including the LFG production potential(L0),the reaction rate constant in the first stage(K1),and the reaction rate constant in the second stage(K2)of 64.746 L,0.202 d^(–1),and 0.338 d^(–1),respectively,were comparable to the old ones of 42.069 L,0.231 d^(–1),and 0.231 d^(–1).The new model is better able to explain the mechanisms involved in LFG generation.展开更多
UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared sam...UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.展开更多
Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over a wide pH range 5-9. The PAE solutions in glass test tubes were placed either in the dark and under the natural sunli...Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over a wide pH range 5-9. The PAE solutions in glass test tubes were placed either in the dark and under the natural sunlight irradiation for evaluating the degradation rate via hydrolysis or photolysis plus hydrolysis, respectively, at ambient temperature for 140 d from autumn to winter in Osaka, Japan. The efficiency of abiotic degradation of the PAEs with relatively short alkyl chains, such as butylbenzyl phthalate (BBP) and di-nbutyl phthalate (DBP), at neutral pH was significantly lower than that in the acidic or alkaline condition. Photolysis was considered to contribute mainly to the total abiotic degradation at all pH. Neither hydrolysis nor photolysis of di-ethylhexyl phthalate (DEHP) proceeded significantly at any pH, especially hydrolysis at neutral pH was negligible. On the other hand, the degradation rate of di- isononyl phthalate (DINP) catalyzed mainly by photolysis was much higher than those of the other PAEs, and was almost completely removed during the experimental period at pH 5 and 9. As a whole, according to the half-life (t1/2) obtained in the experiments, the abiotic degradability of the PAEs was in the sequence: DINP (32-140 d) 〉 DBP (50-360 d), BBP (58-480 d) 〉 DEHP (390-1600 d) under sunlight irradiation (via photolysis plus hydrolysis). Although the abiotic degradation rates for BBP, DBP, and DEHP are much lower than the biodegradation rates reported, the photolysis rate for DINP is comparable to its biodegradation rate in the acidic or alkaline condition.展开更多
The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic ...The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic conditions. The dechlorination reaction approximately followed the first-order kinetics under the experimental conditions(nickel/iron:1.0 g/250 ml;C atrazine=20.0 mg/L), the reaction rate increased with decreasing pH value of the reaction solution and increasing the proportion of Ni:Fe within 2.95%. For condition with 2.95% nickel/iron, the reaction rate constants were 0.07518(R=0.9927), 0.06212(R=0.9846) and 0.00131 min -1(R=0.9565) at pH=2.0, 3.0 and 4.0, respectively. HPLC analysis was used to monitor the decline of atrazine concentration.展开更多
文摘The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineralization from organically amended upland purplish soils has been poorly studied. Therefore, this study investigates C and N mineralization kinetics in organically amended upland purplish soils. Incubation experiments were conducted using soil samples collected from experimental plots that have been under long-term organic amendment fertilization, which includes: Organic manure (OM), crop residues (CR), combined organic manure with inorganic fertilizers (OMNPK), combined crop residue with inorganic fertilizers (CRNPK), conventional inorganic fertilizer (NPK), and no fertilizer (CK). The results showed that organically amended treatments increased C and N mineralization rates by 8 - 24% and 17 - 33%, respectively, compared with NPK. Likewise, the amount of potentially mineralizable carbon (Co) and nitrogen (No) increased by 4 - 9% and 15 - 20%, respectively, compared to the conventional NPK treatment. The rate constants for labile C (kC) and N (kN) were 6 - 29% and 3 - 27% higher than the NPK treatment, respectively. In addition, the initial potential rate of C (Co × kC) and N (No × kN) in organically amended soils were 10 - 37% and 18 - 52% higher compared to NPK. This study tried to show that the mechanisms of N supply was direct application of mineral N fertilizer and mineralization of organic N, while the N retention was reducing soil active N loss and storing more active N in cropland of purplish soil. These results suggest that the long-term application of organic amendments to upland soils may increase nutrient bioavailability.
基金Project (No. 1AGH811) supported by Isfahan University of Tech-nology, Iran
文摘The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation.
文摘The energy size relationship is examined, either as the specific energy required breaking a particulate material from an initial size d1 to a final size d2, where d is usually the d80 size, or as the specific energy required to break a single particle. The present work uses the results obtained using a controlled frequency centrifugal crusher to crush particles of a predetermined size class under different rotation frequencies related to the kinetic energy of the particles at the moment of crushing. The paper calculates the relationship between the rotation frequency and the kinetic energy of the particles before crushing and examines the size distribution of the products. The study results allow presenting the relationship between the kinetic energy of the particles and the mass of particles produced below the initial size class. The work also produces the optimum mathematical model that describes this relationship among three proposed ones. According to this model one can calculate the energy required breaking half of the initial mass below the initial size class and the corresponding specific energy is appointed to the average size of the class. The parameters of the mathematical model can be used to compare the grindability of the different materials. The process can be used as an alternative to the drop weight technique used so far for the study of the breakage energy of minerals and rocks.
基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050027002)。
文摘This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages.In this study,the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate.Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model.The model calibration was then calculated by using the experimental data.The results suggested that the new model was in line with the experimental data.The main parameters of the modified FKTSR model,including the LFG production potential(L0),the reaction rate constant in the first stage(K1),and the reaction rate constant in the second stage(K2)of 64.746 L,0.202 d^(–1),and 0.338 d^(–1),respectively,were comparable to the old ones of 42.069 L,0.231 d^(–1),and 0.231 d^(–1).The new model is better able to explain the mechanisms involved in LFG generation.
基金Projects (50874029, 51090384) supported by the National Natural Science Foundation of China
文摘UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.
文摘Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over a wide pH range 5-9. The PAE solutions in glass test tubes were placed either in the dark and under the natural sunlight irradiation for evaluating the degradation rate via hydrolysis or photolysis plus hydrolysis, respectively, at ambient temperature for 140 d from autumn to winter in Osaka, Japan. The efficiency of abiotic degradation of the PAEs with relatively short alkyl chains, such as butylbenzyl phthalate (BBP) and di-nbutyl phthalate (DBP), at neutral pH was significantly lower than that in the acidic or alkaline condition. Photolysis was considered to contribute mainly to the total abiotic degradation at all pH. Neither hydrolysis nor photolysis of di-ethylhexyl phthalate (DEHP) proceeded significantly at any pH, especially hydrolysis at neutral pH was negligible. On the other hand, the degradation rate of di- isononyl phthalate (DINP) catalyzed mainly by photolysis was much higher than those of the other PAEs, and was almost completely removed during the experimental period at pH 5 and 9. As a whole, according to the half-life (t1/2) obtained in the experiments, the abiotic degradability of the PAEs was in the sequence: DINP (32-140 d) 〉 DBP (50-360 d), BBP (58-480 d) 〉 DEHP (390-1600 d) under sunlight irradiation (via photolysis plus hydrolysis). Although the abiotic degradation rates for BBP, DBP, and DEHP are much lower than the biodegradation rates reported, the photolysis rate for DINP is comparable to its biodegradation rate in the acidic or alkaline condition.
文摘The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic conditions. The dechlorination reaction approximately followed the first-order kinetics under the experimental conditions(nickel/iron:1.0 g/250 ml;C atrazine=20.0 mg/L), the reaction rate increased with decreasing pH value of the reaction solution and increasing the proportion of Ni:Fe within 2.95%. For condition with 2.95% nickel/iron, the reaction rate constants were 0.07518(R=0.9927), 0.06212(R=0.9846) and 0.00131 min -1(R=0.9565) at pH=2.0, 3.0 and 4.0, respectively. HPLC analysis was used to monitor the decline of atrazine concentration.