Free vibration of functionally graded (FG) annular sector plates embedded with two piezoelectric layers is studied with a generalized differential quadrature (GDQ) method. Based on the first-order shear deformation (F...Free vibration of functionally graded (FG) annular sector plates embedded with two piezoelectric layers is studied with a generalized differential quadrature (GDQ) method. Based on the first-order shear deformation (FSD) plate theory and Hamilton’s principle with parameters satisfying Maxwell’s electrostatics equation in the piezoelectric layers, governing equations of motion are developed. Both open and closed circuit (shortly connected) boundary conditions on the piezoelectric surfaces, which are respective conditions for sensors and actuators, are accounted for. It is observed that the open circuit condition gives higher natural frequencies than a shortly connected condition. For the simulation of the potential electric function in piezoelectric layers, a sinusoidal function in the transverse direction is considered. It is assumed that properties of the FG material (FGM) change continuously through the thickness according to a power distribution law. The fast rate convergence and accuracy of the GDQ method with a small number of grid points are demonstrated through some numerical examples. With various combinations of free, clamped, and simply supported boundary conditions, the effects of the thicknesses of piezoelectric layers and host plate, power law index of FGMs, and plate geometrical parameters (e.g., angle and radii of annular sector) on the in-plane and out-of-plane nat-ural frequencies for different FG and piezoelectric materials are also studied. Results can be used to predict the behaviors of FG and piezoelectric materials in mechanical systems.展开更多
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model...Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.展开更多
The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functional...The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson’s ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark’s direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.展开更多
The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi...The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.展开更多
An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approa...An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical displacements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction factor (k) is introduced to modilfy both the shear stress and the electric displacement of each layer. And the detailed mathematical derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those obtained from the exact 2D solution. Excellent agreements between the present model prediction with k=-8/9 and the exact solutions are observed for the resonant frequencies.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method...This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.展开更多
In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (C...In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be unifonnly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended nile of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG?CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are perfbnned to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.展开更多
文摘Free vibration of functionally graded (FG) annular sector plates embedded with two piezoelectric layers is studied with a generalized differential quadrature (GDQ) method. Based on the first-order shear deformation (FSD) plate theory and Hamilton’s principle with parameters satisfying Maxwell’s electrostatics equation in the piezoelectric layers, governing equations of motion are developed. Both open and closed circuit (shortly connected) boundary conditions on the piezoelectric surfaces, which are respective conditions for sensors and actuators, are accounted for. It is observed that the open circuit condition gives higher natural frequencies than a shortly connected condition. For the simulation of the potential electric function in piezoelectric layers, a sinusoidal function in the transverse direction is considered. It is assumed that properties of the FG material (FGM) change continuously through the thickness according to a power distribution law. The fast rate convergence and accuracy of the GDQ method with a small number of grid points are demonstrated through some numerical examples. With various combinations of free, clamped, and simply supported boundary conditions, the effects of the thicknesses of piezoelectric layers and host plate, power law index of FGMs, and plate geometrical parameters (e.g., angle and radii of annular sector) on the in-plane and out-of-plane nat-ural frequencies for different FG and piezoelectric materials are also studied. Results can be used to predict the behaviors of FG and piezoelectric materials in mechanical systems.
基金The project is supported by the National Natural Science Foundation of China(10502028)the Special Foundation for the Authors of the Nationwide(China)Excellent Doctoral Dissertation(200242)the Science Research Foundation of China Agricultural University(2004016).
文摘Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
文摘The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson’s ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark’s direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.
文摘The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.
基金Project (Nos. 10472102 and 10372089) supported by the NationalNatural Science Foundation of China
文摘An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical displacements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction factor (k) is introduced to modilfy both the shear stress and the electric displacement of each layer. And the detailed mathematical derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those obtained from the exact 2D solution. Excellent agreements between the present model prediction with k=-8/9 and the exact solutions are observed for the resonant frequencies.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.
文摘This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.
文摘In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be unifonnly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended nile of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG?CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are perfbnned to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.