Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoul...We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.展开更多
Consensus problems of high-order continuous-time multi-agent systems with time-delays and switching topologies are studied. The motivation of this work is to extend second-order continuous-time multi-agent systems fro...Consensus problems of high-order continuous-time multi-agent systems with time-delays and switching topologies are studied. The motivation of this work is to extend second-order continuous-time multi-agent systems from the liter- ature. It is shown that consensus can be reached with arbitrarily bounded time-delays even though the communication topology might not have spanning trees. A numerical example is included to show the theoretical results.展开更多
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s...A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.展开更多
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted b...This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.展开更多
This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulati...This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.展开更多
This paper investigates the leader-following consensus problem of multi-agent systems where the leader is static and the controlling effect of each follower depends on its own state. The control protocols are proposed...This paper investigates the leader-following consensus problem of multi-agent systems where the leader is static and the controlling effect of each follower depends on its own state. The control protocols are proposed for two cases: i) for network with switching topologies and undirected information flow; ii) for network with directed information flow and communication time-delays. With the aid of several tools from algebraic graph, matrix theory and stability the- ory, the sufficient conditions guaranteeing leader-following consensus are obtained by constructing appropriate Lyapunov functions. Simulations are presented to demonstrate the effectiveness of our theoretical results.展开更多
In this paper,an optimal secondary control strategy is proposed for islanded AC microgrids considering communi-cation time-delays.The proposed method is designed based on the data-driven principle,which consists of an...In this paper,an optimal secondary control strategy is proposed for islanded AC microgrids considering communi-cation time-delays.The proposed method is designed based on the data-driven principle,which consists of an offine training phase and online application phase.For offline training,each control agent is formulated by a deep neural network(DNN)and trained based on a multi-agent deep reinforcement learning(MA-DRL)framework.A deep deterministic policy gradient(DDPG)algorithm is improved and applied to search for an optimal policy of the secondary control,where a global cost function is developed to evaluate the overall control performance.In addition,the communication time-delay is introduced in the system to enrich training scenarios,which aims to solve the time-delay problem in the secondary control.For the online stage,each controller is deployed in a distributed way which only requires local and neighboring information for each DG.Based on this,the well-trained controllers can provide optimal solutions under load variations,and communication time-delays for online applications.Several case studies are conducted to validate the feasibility and stability of the proposed secondary control.Index Terms-Communication time-delay,global cost function,islanded AC microgrid,multi-agent deep reinforcement learning(MA-DRL),secondary control.展开更多
In this paper, we investigate a decentralized stabilization problem of uncertain multi-agent systems with mixed delays including discrete and distributed time-varying delays based on passivity stability. We design a d...In this paper, we investigate a decentralized stabilization problem of uncertain multi-agent systems with mixed delays including discrete and distributed time-varying delays based on passivity stability. We design a decentralized state-feedback stabilization scheme such that the family of closed-loop feedback subsystems enjoys the delay-dependent passivity stability for each subsystem. Then, by employing a new Lyapunov-Krasovskii function, a linear matrix inequality (LMI) approach is developed to establish the delay-dependent criteria for the passivity stability of multi-agent systems. The sufficient condition is given for checking the passivity stability. The proposed LMI result is computationally efficient. An example is given to show the effectiveness of the method.展开更多
This paper investigates the controllability of general linear discrete-time multi-agent systems with directed and weighted signed networks by using graphic and algebraic methods.The nondelay and delay cases are consid...This paper investigates the controllability of general linear discrete-time multi-agent systems with directed and weighted signed networks by using graphic and algebraic methods.The nondelay and delay cases are considered respectively.For the case of no time delay,the upper bound condition of the controllable subspace is given by using the equitable partition method,and the influence of coefficient matrix selection of individual dynamics is illustrated.For the case of single delay and multiple delays,the equitable partition method is extended to deal with time-delay systems,and some conclusions are obtained.In particular,some simplified algebraic criteria for controllability of systems with time delay are obtained by using augmented system method and traditional algebraic controllability criteria.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61074159 and 61703286)
文摘We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 60672029)the National Basic Research Program of China (Grant No. 2009CB320505)the National Defense Science and Technology Foundation of State Key Laboratory of Secure Communication (Grant No. 9140C1104020903)
文摘Consensus problems of high-order continuous-time multi-agent systems with time-delays and switching topologies are studied. The motivation of this work is to extend second-order continuous-time multi-agent systems from the liter- ature. It is shown that consensus can be reached with arbitrarily bounded time-delays even though the communication topology might not have spanning trees. A numerical example is included to show the theoretical results.
基金supported by the National Natural Science Foundation of China(62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG170610)。
文摘A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573156,61273126,61503142,61272382,and 61573154)the Fundamental Research Funds for the Central Universities(Grant No.x2zd D2153620)
文摘This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.
基金National Key Research and Development Plan of China(No.2017YFB1201003-020)National Natural Science Foundation of China(Nos.61663020,61661027)。
文摘This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.
基金supported by the National Natural Science Foundation of China(Nos.61075065,60774045,U1134108)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110162110041)Hunan Provincial Innovation Foundation For Postgraduate(No.CX2011B086)
文摘This paper investigates the leader-following consensus problem of multi-agent systems where the leader is static and the controlling effect of each follower depends on its own state. The control protocols are proposed for two cases: i) for network with switching topologies and undirected information flow; ii) for network with directed information flow and communication time-delays. With the aid of several tools from algebraic graph, matrix theory and stability the- ory, the sufficient conditions guaranteeing leader-following consensus are obtained by constructing appropriate Lyapunov functions. Simulations are presented to demonstrate the effectiveness of our theoretical results.
基金supported by the Ministry of Education(MOE),Republic of Singapore,under grant(AcRFTIER-1 RT11/22)。
文摘In this paper,an optimal secondary control strategy is proposed for islanded AC microgrids considering communi-cation time-delays.The proposed method is designed based on the data-driven principle,which consists of an offine training phase and online application phase.For offline training,each control agent is formulated by a deep neural network(DNN)and trained based on a multi-agent deep reinforcement learning(MA-DRL)framework.A deep deterministic policy gradient(DDPG)algorithm is improved and applied to search for an optimal policy of the secondary control,where a global cost function is developed to evaluate the overall control performance.In addition,the communication time-delay is introduced in the system to enrich training scenarios,which aims to solve the time-delay problem in the secondary control.For the online stage,each controller is deployed in a distributed way which only requires local and neighboring information for each DG.Based on this,the well-trained controllers can provide optimal solutions under load variations,and communication time-delays for online applications.Several case studies are conducted to validate the feasibility and stability of the proposed secondary control.Index Terms-Communication time-delay,global cost function,islanded AC microgrid,multi-agent deep reinforcement learning(MA-DRL),secondary control.
基金supported by the National Natural Science Foundation of China(Nos.60874017,50977008,60821063,61034005)the National High Technology Research and Development Program of China(No.2009AA04Z127)the National Basic Research Program of China(No.2009CB320601)
文摘In this paper, we investigate a decentralized stabilization problem of uncertain multi-agent systems with mixed delays including discrete and distributed time-varying delays based on passivity stability. We design a decentralized state-feedback stabilization scheme such that the family of closed-loop feedback subsystems enjoys the delay-dependent passivity stability for each subsystem. Then, by employing a new Lyapunov-Krasovskii function, a linear matrix inequality (LMI) approach is developed to establish the delay-dependent criteria for the passivity stability of multi-agent systems. The sufficient condition is given for checking the passivity stability. The proposed LMI result is computationally efficient. An example is given to show the effectiveness of the method.
基金the National Natural Science Foundation of China under Grant Nos.61873136 and 62033007Taishan Scholars Climbing Program of Shandong Province of China and Taishan Scholars Project of Shandong Province of China under Grant No.ts20190930。
文摘This paper investigates the controllability of general linear discrete-time multi-agent systems with directed and weighted signed networks by using graphic and algebraic methods.The nondelay and delay cases are considered respectively.For the case of no time delay,the upper bound condition of the controllable subspace is given by using the equitable partition method,and the influence of coefficient matrix selection of individual dynamics is illustrated.For the case of single delay and multiple delays,the equitable partition method is extended to deal with time-delay systems,and some conclusions are obtained.In particular,some simplified algebraic criteria for controllability of systems with time delay are obtained by using augmented system method and traditional algebraic controllability criteria.