期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs_2SnX_6(X= Cl, Br, I) 被引量:1
1
作者 黄海铭 姜振益 罗时军 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期357-364,共8页
The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hyb... The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells. 展开更多
关键词 first-principles calculation perovskites elastic properties optical properties
下载PDF
First-principles calculation of structural and elastic properties of Pd_(3-x)Rh_xV alloys 被引量:2
2
作者 王桃芬 陈平 +1 位作者 邓永和 唐璧玉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期388-394,共7页
The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the incre... The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties. 展开更多
关键词 Pd3-xRhxV alloys first-principle calculations electronic structure elastic properties
下载PDF
First-principles calculations of structural,elastic and electronic properties of AB_(2)type intermetallics in Mg–Zn–Ca–Cu alloy 被引量:10
3
作者 Pingli Mao Bo Yu +2 位作者 Zheng Liu Feng Wang Yang Ju 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期256-262,共7页
Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculate... Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties. 展开更多
关键词 INTERMETALLICS first-principles calculation Structural stability Electronic structure elastic property
下载PDF
First-principles calculations of structural,elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure 被引量:6
4
作者 Zhi-sheng Nong Hao-yu Wang Jing-chuan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1405-1414,共10页
To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate th... To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance. 展开更多
关键词 first-principles calculations elastic property electronic structure density of states high-entropy alloys high pressure
下载PDF
Electronic and optical properties of anion-doped c-ZrO_2 from first-principles calculations 被引量:3
5
作者 丁家峰 李新梅 +3 位作者 崔丽玲 曹粲 王会海 曹建 《Journal of Central South University》 SCIE EI CAS 2014年第7期2584-2589,共6页
Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.I... Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal. 展开更多
关键词 anion-doping first-principles calculations electronic properties optical properties
下载PDF
First-principles investigation of the effects of strain on elastic thermal, and optical properties of CuGaTe2 被引量:2
6
作者 薛丽 任一鸣 +1 位作者 何俊荣 徐四六 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期324-328,共5页
Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial ... Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range.These research findings can give hints for designing thermoelectric and photovoltaic devices. 展开更多
关键词 elastic constants thermal properties optical properties first-principles
下载PDF
Electronic and optical properties of GaN–MoS2 heterostructure from first-principles calculations 被引量:1
7
作者 Dahua Ren Xingyi Tan +1 位作者 Teng Zhang Yuan Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期254-257,共4页
Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored... Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts. 展开更多
关键词 GaN-MoS2 HETEROSTRUCTURE ELECTRONIC structures optical properties first-principles calculationS
下载PDF
Band structure,Fermi surface,elastic,thermodynamic,and optical properties of AlZr3,AlCu3,and AlCu2Zr:First-principles study
8
作者 Parvin R Parvin F +1 位作者 Ali M S Islam A K M A 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期103-112,共10页
The electronic properties(Fermi surface,band structure,and density of states(DOS)) of Al-based alloys AlM3(M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method w... The electronic properties(Fermi surface,band structure,and density of states(DOS)) of Al-based alloys AlM3(M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation(GGA).The structural parameters and elastic constants are evaluated and compared with other available data.Also,the pressure dependences of mechanical properties of the compounds are studied.The temperature dependence of adiabatic bulk modulus,Debye temperature,specific heat,thermal expansion coefficient,entropy,and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K.The parameters of optical properties(dielectric functions,refractive index,extinction coefficient,absorption spectrum,conductivity,energy-loss spectrum,and reflectivity) of the compounds are calculated and discussed for the first time.The reflectivities of the materials are quite high in the IR-visible-UV region up to ~ 15 eV,showing that they promise to be good coating materials to avoid solar heating.Some of the properties are also compared with those of the Al-based Ni3 Al compound. 展开更多
关键词 first principle calculations Fermi surface elastic moduli ENTROPY and internal energy optical properties
下载PDF
Mechanical Properties of Formamidinium Halide Perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I) by First-Principles Calculations
9
作者 Lei Guo Gang Tang Jiawang Hong 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第5期44-48,共5页
The mechanical properties of formamidinium halide perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I)are systematically investigated using first-principles calculations. Our results reveal that FABX_3 perovskites pos... The mechanical properties of formamidinium halide perovskites FABX_3(FA=CH(NH_2)_2; B=Pb, Sn; X=Br, I)are systematically investigated using first-principles calculations. Our results reveal that FABX_3 perovskites possess excellent mechanical flexibility, ductility and strong anisotropy. We shows that the planar organic cation FA+ has an important effect on the mechanical properties of FABX3 perovskites. In addition, our results indicate that (i) the moduli(bulk modulus B, Young's modulus E, and shear modulus G) of FABBr_3 are larger than those of FABI_3 for the same B atom, and (ii) the moduli of FAPbX_3 are larger than those of FASnX_3 for the same halide atom. The reason for the two trends is demonstrated by carefully analyzing the bond strength between B and X atoms based on the projected crystal orbital Hamilton population method. 展开更多
关键词 FA=CH SN MECHANICAL properties of Formamidinium HALIDE perovskites FABX3 by first-principles calculations B FA CH
下载PDF
First-principles study of the structural,elastic,and optical properties for Sr_(0.5)Ca_(0.5)TiO_3
10
作者 杨春燕 张蓉 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期391-395,共5页
A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F poi... A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated. 展开更多
关键词 first-principles electronic structure elastic properties optical properties
下载PDF
First principles calculation on electronic structure,chemical bonding,elastic and optical properties of novel tungsten triboride
11
作者 王一夫 夏庆林 余燕 《Journal of Central South University》 SCIE EI CAS 2014年第2期500-505,共6页
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul... The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV. 展开更多
关键词 hP24-WB3 first principles calculation electronic structure chemical bonding elastic properties optical properties
下载PDF
First-Principles Calculation on Geometric,Electronic and Optical Properties of Fully Fluorinated Stanene:a Large-Gap Quantum Spin Hall Insulator
12
作者 武红 李峰 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期104-107,共4页
The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene... The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the F point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the F point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20J/m^2, which is comparable with the in-plane stiffness of black phos- phorus monolayer along the x-direction (~28.94 J/m^2). Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber. 展开更多
关键词 of in first-principles calculation on Geometric Electronic and optical properties of Fully Fluorinated Stanene:a Large-Gap Quantum Spin Hall Insulator HALL is for on
下载PDF
AB INITIO CALCULATION OF THE ELASTIC AND OPTICAL PROPERTIES OF Al3Sc COMPOUND
13
作者 M. Song D.H. Xiao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第6期425-428,共4页
The ab initio method has been performed to explore the elastic and optical properties of Al3Sc compound, based on a plane wave pseudopotential method. It can be seen that the calculated equilibrium lattice parameter a... The ab initio method has been performed to explore the elastic and optical properties of Al3Sc compound, based on a plane wave pseudopotential method. It can be seen that the calculated equilibrium lattice parameter and elastic constants are in reasonable agreement with the previous experimental data. The elastic constants satisfy the requirement for mechanical stability in the cubic structure of the Al3Sc compound. The optical property calculations show that a strong absorptive peak exists from O-15eV and a relative small absorptive peak exists around 30eV. The form is caused by the optical transitions between high s, p, and d bands, and the latter results from the optical transitions from high s, p, and d bands to the low 2p band. 展开更多
关键词 intermetallic compound Al3Sc elastic property optical property ab initio calculation
下载PDF
A first-principles study on electronic structure and elastic properties of Al_4Sr, Mg_2Sr and Mg_(23)Sr_6 phases 被引量:1
14
作者 周惦武 刘金水 彭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2677-2683,共7页
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al... The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity. 展开更多
关键词 magnesium alloy first-principles calculation electronic structure elastic property
下载PDF
First-principles investigations of structural, mechanical, electronic and optical properties of U_3Si_2-type AlSc_2Si_2 under high pressure
15
作者 张旭东 王峰 姜伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期148-156,共9页
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a... The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications. 展开更多
关键词 U3Si2-type AlSc2Si2 mechanical properties electronic structure optical properties first-principles calculations
下载PDF
First-principles investigation of the electronic,elastic and thermodynamic properties of VC under high pressure 被引量:2
16
作者 郝爱民 周铁军 +2 位作者 朱岩 张新宇 刘日平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期415-420,共6页
An investigation of the electronic, elastic and thermodynamic properties of VC under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane-wave ... An investigation of the electronic, elastic and thermodynamic properties of VC under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane-wave basis set, as implemented in the CASTEP code. At elevated pressures, VC is predicted to undergo a structural transition from a relatively open NaCl-type structure to a more dense CsCl,type one. The predicted transition pressure is 520 GPa. The elastic constant, Debye temperature and heat capacity each as a function of pressure and/or temperature of VC are presented for the first time. 展开更多
关键词 high pressure first-principles calculations elastic property phase transition
下载PDF
Optical properties of La_(2)O_(3) and HfO_(2) for radiative cooling via multiscale simulations
17
作者 Lihao Wang Wanglin Yang +5 位作者 Zhongyang Wang Hongchao Li Hao Gong Jingyi Pan Tongxiang Fan Xiao Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期430-441,共12页
Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performan... Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive,limiting insight into the underlying physics of their optical response and cooling efficacy.La_(2)O_(3)and HfO_(2),which represent rare earth and third/fourth subgroup inorganic oxides,respectively,show promise for radiative cooling applications.In this study,we used multiscale simulations to investigate the optical properties of La_(2)O_(3)and HfO_(2)across a broad spectrum.First-principles calculations revealed their dielectric functions and intrinsic refractive indices,and the results indicated that the slightly smaller bandgap of La_(2)O_(3)compared to HfO_(2)induces a higher refractive index in the solar band.Additionally,three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering,which enhanced the emissivity in the sky window.Monte Carlo simulations were also used to determine the macroscopic optical properties of La_(2)O_(3)and HfO_(2)coatings.Based on the simulated results,we identified that the particle size and particle volume fraction play a dominant role in the optical properties.Our findings underscore the potential of La_(2)O_(3)and HfO_(2)nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations. 展开更多
关键词 radiative cooling optical properties of La_(2)O_(3) and HfO_(2) first-principles calculations Monte Carlo simulations
下载PDF
First-principles studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 被引量:1
18
作者 胡朝浩 殷学辉 +3 位作者 王殿辉 钟燕 周怀营 饶光辉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期523-527,共5页
The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-B... The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi2Sn2O7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-Bi2Sn2O7 is the p-type semiconductor with an indirect band gap of about 2.72 e V.The flat electronic bands close to the valence band maximum are mainly composed of Bi-6s and O-2p states and play a key role in determining the electrical properties of γ-Bi2Sn2O7.The calculated complex dielectric function and macroscopic optical constants including refractive index,extinction coefficient,absorption coefficients,reflectivity,and electron energy-loss function show that γ-Bi2Sn2O7 is an excellent light absorbing material.The analysis on mechanical properties shows that γ-Bi2Sn2O7 is mechanically stable and highly isotropic. 展开更多
关键词 γ-Bi2Sn2O7 electronic structure optical properties first-principle calculations
下载PDF
Electronic Structure and Optical Properties of Zinc-Blende In_xGa_(1-x)N_yAs_(1-y) by a First-Principles Study
19
作者 沈阅 芦鹏飞 +4 位作者 俞重远 赵龙 叶寒 刘玉敏 袁桂芳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期693-701,共9页
Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation i... Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed. 展开更多
关键词 first-principles calculation GAAS electronic structure optical properties
下载PDF
Anomalous Optical and Electronic Properties of CaTiO3 Perovskites
20
作者 LIU Hui-Ping DUAN Yi-Feng YI Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期563-570,共8页
With the help of the first-prlnciples full potential linearized augmented plane wave method, absorption coefficients, reflect/vity, dielectric behavior and electronic properties, including electronic energy bands, den... With the help of the first-prlnciples full potential linearized augmented plane wave method, absorption coefficients, reflect/vity, dielectric behavior and electronic properties, including electronic energy bands, density of states and charge density distributions, are studied for the tetragonal and cubic CaTiO3. By considering the thermal expansion effects, an approximate method is proposed for the study of the stability of ground state and a tendency of phase transition, based on the minimum free energy principle. Subsequently, numerical calculations are carried out by using the first-principles perturbation method. We demonstrate that the high-temperature phase is cubic. It is shown that optical spectra in tetragonal phase exhibit single-peak feature and differ from multi-peak character in cubic. We find that strong orbital hybridization results in the co-valent bonds between Ti 3d and O 2p electrons and forms two-type dipoles (Ti-Ol and Ti-02) in tetragonal, while the Ti-O dipoles are identical in cubic. It is argued that crystal structure determines the dipole distributions and leads to some electron states among which the dipole-dipole transit/on forbidden is a key, causing such anomalous optical phenomena with the insulator characteristics. The predicted charge density distribution and the tendency of phase transition from tetragonal to cubic are in good agreement with experimental observations. 展开更多
关键词 first-principles calculations CaTiO3 perovskites optical and electronic properties
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部