期刊文献+
共找到709篇文章
< 1 2 36 >
每页显示 20 50 100
First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni_2FeGa magnetic shape memory alloys 被引量:1
1
作者 贺王强 黄厚兵 +1 位作者 柳祝红 马星桥 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期438-443,共6页
The elastic, magnetoelastic, and phonon properties of Ni2FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree we... The elastic, magnetoelastic, and phonon properties of Ni2FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available the- oretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni2FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye tem- peratures of the Ni2FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3 x 10^6 J/m3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni2FeGa austenite phase. 展开更多
关键词 Ni2FeGa elastic constants first-principles calculations magnetoelastic coefficients
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
2
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered first-principles calculations ENTHALPIES Mechanical properties
下载PDF
First-Principles Calculation of the Topological Nodal-Line Semimetal FeGe_(2)
3
作者 Yuchen Zou Jianan Bian Yiming Yu 《材料科学与工程(中英文B版)》 2024年第1期1-6,共6页
The electronic and topological properties of FeGe2 with a tetragonal crystal structure were investigated via first-principles calculations.The results demonstrate that FeGe2 in this structure exhibits anti-ferromagnet... The electronic and topological properties of FeGe2 with a tetragonal crystal structure were investigated via first-principles calculations.The results demonstrate that FeGe2 in this structure exhibits anti-ferromagnetism,with two bands crossing the Fermi level nesting each other at high-symmetry points in the Brillouin zone,forming a nodal ring where the nodes intersect in momentum space.Additionally,it possesses nontrivial topological surface states.Upon inclusion of SOC(spin-orbit coupling),there are no significant changes observed in the band structure,nodal features,or surface states,indicating the persistence of its topological nodal-line characteristics. 展开更多
关键词 Topological semimetal first-principles calculations electronic property topological property
下载PDF
First-principles calculations of structural,elastic and electronic properties of AB_(2)type intermetallics in Mg–Zn–Ca–Cu alloy 被引量:10
4
作者 Pingli Mao Bo Yu +2 位作者 Zheng Liu Feng Wang Yang Ju 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期256-262,共7页
Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculate... Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties. 展开更多
关键词 INTERMETALLICS first-principles calculation Structural stability Electronic structure Elastic property
下载PDF
First-principles calculations of structural,elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure 被引量:6
5
作者 Zhi-sheng Nong Hao-yu Wang Jing-chuan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1405-1414,共10页
To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate th... To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance. 展开更多
关键词 first-principles calculations elastic property electronic structure density of states high-entropy alloys high pressure
下载PDF
Electronic and optical properties of anion-doped c-ZrO_2 from first-principles calculations 被引量:3
6
作者 丁家峰 李新梅 +3 位作者 崔丽玲 曹粲 王会海 曹建 《Journal of Central South University》 SCIE EI CAS 2014年第7期2584-2589,共6页
Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.I... Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal. 展开更多
关键词 anion-doping first-principles calculations electronic properties optical properties
下载PDF
Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations 被引量:4
7
作者 M A Ali M R Khatun +1 位作者 NJahan M M Hossain 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期297-302,共6页
The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density func- tional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal struc... The structural, electronic, optical and thermodynamic properties of Mo2Ga2C are investigated using density func- tional theory (DFT) within the generalized gradient approximation (GGA). The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. The electronic density of states (DOS) is calculated and analyzed. The metallic behavior for the compound is confirmed and the value of DOS at Fermi level is 4.2 states per unit cell per eV. Technologically important optical parameters (e.g., dielectric function, refractive index, absorption coefficient, photo conductivity, reflectivity, and loss function) are calculated for the first time. The study of dielectric constant (ε1) indicates the Drude-like behavior. The absorption and conductivity spectra suggest that the compound is metallic. The reflectance spectrum shows that this compound has the potential to be used as a solar reflector. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient of Mo2Ga2C MAX phase are derived from the quasi-harmonic Debye model with phononic effect also for the first time. Analysis of Tc expression using available parameter values (DOS, Debye temperature, atomic mass, etc.) suggests that the compound is less likely to be superconductor. 展开更多
关键词 first-principles calculations density of states (DOS) optical properties thermodynamic properties
下载PDF
First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries 被引量:3
8
作者 RU Qiang PENG Wei ZHANG Zhiwen HU Shejun LI Yanling 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期160-165,共6页
The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-... The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-principles plane-wave pseudo-potential method based on the den- sity functional theory. Sn-Zn films were also deposited on copper foils by an electroless plating technique. The actual composition and chemical characters were explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), plasma atomic emission spectrometry (ICP), and constant current charge/discharge measurements (CC). The results show that separation phases with tin and zinc including a small quantity of Cu6Sn5 phase were obtained, the initial lithium insertion capacity of the Sn-Zn film was 661 mAh/g, and obvious potential pla- teaus of about 0.4 V and 0.7 V were displayed, which is in accordance with the results of theoretical calculations. The capacity of the Sn-Zn film decreased seriously with the increase of cycle number. 展开更多
关键词 lithium batteries electrochemical electrodes tin alloys first-principles calculations
下载PDF
Dissociations of O_2 molecules on ultrathin Pb(111) films:first-principles plane wave calculations 被引量:3
9
作者 Hu Zi-Yu Yang Yu +3 位作者 Sun Bo Zhang Ping Wang Wen-Chuan Shao Xiao-Hong 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期380-388,共9页
Using first-principles calculations, we systematically study the dissociations of 02 molecules on different ultrathin Pb(lll) films. According to our previous work revealing the molecular adsorption precursor states... Using first-principles calculations, we systematically study the dissociations of 02 molecules on different ultrathin Pb(lll) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(lll) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(lll) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(lll) fihns, and the energy barriers are found to be influenced by the quantum size effects of Pb(lll) films. 展开更多
关键词 first-principles calculation DISSOCIATION Pb(lll) quantum size effects
下载PDF
Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations 被引量:2
10
作者 Zhan-jun Gao You-song Gu +1 位作者 Xue-qiang Wang Yue Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第1期89-94,共6页
First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction... First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction and the elastic moduli of ZnO nanowires were obtained from the energy versus strain curves. Pure and Mn-doped ZnO nanowires with three different diameters (1.14, 1.43, and 1.74 nm) were studied. It is found that the elastic moduli of the ZnO nanowires are 146.5, 146.6, and 143.9 GPa, respectively, which are slightly larger than that of the bulk (140.1 GPa), and they increase as the diameter decreases. The elastic moduli of the Mn-doped ZnO nanowires are 137.6, 141.8, and 141.0 GPa, which are slightly lower than those of the undoped ones by 6.1%, 3.3%, and 2.0%, respectively. The mechanisms of doping and size effect were discussed in terms of chemical bonding and geometry considerations. 展开更多
关键词 zinc oxide NANOWIRES mechanical properties DOPING first-principles calculations MANGANESE
下载PDF
Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations 被引量:2
11
作者 杨晓勇 鲁勇 +1 位作者 郑法伟 张平 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期352-357,共6页
Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic cons... Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. 展开更多
关键词 first-principles calculations mechanical properties electronic properties thermodynamic properties
下载PDF
Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations 被引量:2
12
作者 汤富领 刘冉 +4 位作者 薛红涛 路文江 冯煜东 芮执元 黄敏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期661-666,共6页
Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+ Incu) CulnGaSe2/CdS interfaces theoretically, espec... Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+ Incu) CulnGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+ InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CulnGaSe2 and CdS band gap regions are mainly composed of interracial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CulnGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region. 展开更多
关键词 first-principles calculation CulnGaSe2/CdS density of states interface states
下载PDF
First-principles calculations of 5d atoms doped hexagonal-AlN sheets: Geometry, magnetic property and the influence of symmetry and symmetry-breaking on the electronic structure 被引量:2
13
作者 汤富领 刘冉 +4 位作者 薛红涛 路文江 冯煜东 芮执元 黄敏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期324-329,共6页
The geometry, electronic structure and magnetic property of the hexagonal AlN(h-AlN) sheet doped by 5d atoms(Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) are investigated by first-principles calculations based on the den... The geometry, electronic structure and magnetic property of the hexagonal AlN(h-AlN) sheet doped by 5d atoms(Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) are investigated by first-principles calculations based on the density functional theory. The influence of symmetry and symmetry-breaking is also studied. There are two types of local symmetries of the doped systems: C3v and D3h. The symmetry will deviate from exact C3v and D3h for some particular dopants after optimization. The total magnetic moments of the doped systems are 0μBfor Lu, Ta and Ir; 1μB for Hf, W, Pt and Hg; 2μB for Re and Au; and 3μB for Os and Al-vacancy. The total densities of state are presented, where impurity energy levels exist. The impurity energy levels and total magnetic moments can be explained by the splitting of 5d orbitals or molecular orbitals under different symmetries. 展开更多
关键词 hexagonal-AlN sheet first-principles calculations 5d atoms symmetry and symmetry-breaking
下载PDF
Electronic and optical properties of GaN–MoS2 heterostructure from first-principles calculations 被引量:1
14
作者 Dahua Ren Xingyi Tan +1 位作者 Teng Zhang Yuan Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期254-257,共4页
Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored... Heterostructures(HSs)have attracted significant attention because of their interlayer van der Waals interactions.The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory.The results indicate that the direct band gap(1.95 e V)of the Ga N-MoS2 HS is lower than the individual band gaps of both the GaN layer(3.48 e V)and the MoS2 layer(2.03 eV)based on HSE06 hybrid functional calculations.Specifically,the GaN-MoS2 HS is a typical type-II band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency.Under tensile or compressive strain,the direct band gap of the GaN-MoS2 HS undergoes redshifts.Additionally,the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5%or-5%.Therefore,the results reported above can be used to expand the application of Ga N-MoS2 HSs to photovoltaic cells and photocatalysts. 展开更多
关键词 GaN-MoS2 HETEROSTRUCTURE ELECTRONIC structures optical properties first-principles calculations
下载PDF
First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation,mechanical and magnetic properties 被引量:2
15
作者 Huaxin Qi Jing Bai +7 位作者 Miao Jin Jiaxin Xu Xin Liu Ziqi Guan Jianglong Gu Daoyong Cong Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期930-938,共9页
The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125... The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. 展开更多
关键词 Ni–Mn–Ti-based all-d-metal Heusler alloys first-principles calculations mechanical properties martensitic transformation magnetic properties
下载PDF
Negative Thermal Expansion of GaFe(CN)_6 and Effect of Na Insertion by First-Principles Calculations 被引量:1
16
作者 Meng Li Yuan Li +1 位作者 Chun-Yan Wang Qiang Sun 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第6期37-40,共4页
We study the negative thermal expansion(NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)_6 by first-principles calculations based on density functional theory within the quasi-h... We study the negative thermal expansion(NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)_6 by first-principles calculations based on density functional theory within the quasi-harmonic approximation. The calculated results show that the material exhibits NTE due to the low transverse vibrational modes of the CN groups. The modes demonstrate larger negative values of the mode Grüneisen parameters. Once Na is introduced in the framework of the material, it prefers to locate at the center of the quadrates of the framework material and binds to the four N anions nearby. As a consequence, the transverse vibrational mode of the CN group is clearly hindered and the NTE of the material is weakened. Our theoretical calculations have clarified the mechanisms of NTE and the effect of the guest Na on the NTE of the framework material. 展开更多
关键词 NEGATIVE thermal expansion(NTE) NA INSERTION first-principles calculations
下载PDF
Phase transition and thermodynamic properties of BiFeO_3 from first-principles calculations 被引量:1
17
作者 李强 黄多辉 +1 位作者 曹启龙 王藩侯 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期414-420,共7页
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the ... The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained. 展开更多
关键词 first-principles calculation BIFEO3 thermodynamic property phase transition
下载PDF
First-Principles Calculations of the Structural, Mechanical and Thermodynamics Properties of Cubic Zirconia 被引量:4
18
作者 Ibrahim D. Muhammad Mokhtar Awang +1 位作者 Othman Mamat Zilati Bt Shaari 《World Journal of Nano Science and Engineering》 2014年第2期97-103,共7页
The structural, mechanical and thermodynamics properties of cubic zirconium oxide (cZrO2) were investigated in this study using ab initio or first-principles calculations. Density functional theory was used to optimiz... The structural, mechanical and thermodynamics properties of cubic zirconium oxide (cZrO2) were investigated in this study using ab initio or first-principles calculations. Density functional theory was used to optimize the crystal structure of cZrO2 and thereafter, simulations were conducted to predict the lattice parameters and elastic constants. The Zr-O bond distance was calculated as 2.1763 &#197 with unit cell density of 6.4179 g/cm3. The data obtained were used to determine Young’s modulus, bulk modulus, Poisson’s ratio and hardness of cZrO2 as 545.12 GPa, 136.464 GPa, 0.1898 and 12.663(Hv) respectively. The result indicates that cZrO2 is mechanically stable with thermodynamics properties of a refractory material having potential for structural and catalytic applications in various forms as a nanomaterial. 展开更多
关键词 Cubic ZIRCONIUM Oxide first-principles calculation CASTEP Elastic CONSTANTS
下载PDF
Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations 被引量:1
19
作者 刘俊 詹瑞 +1 位作者 李丽 董会宁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期351-355,共5页
Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their ma... Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals. 展开更多
关键词 half-metallic ferromagnets first-principles calculations crystal-cell magnetic moments
下载PDF
Comparisons between adsorption and diffusion of alkali,alkaline earth metal atoms on silicene and those on silicane:Insight from first-principles calculations 被引量:1
20
作者 徐波 卢欢胜 +3 位作者 刘波 刘刚 吴木生 欧阳楚英 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期390-396,共7页
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane ... The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. 展开更多
关键词 first-principles calculations silicene and silicane atom adsorption atom diffusion
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部