Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Z...Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Zn0.875In0.125O are constructed, and the geometry optimizations of the three models are carried out. The total density of states (DOS) and the band structures (BS) are also calculated. The calculation results show that in the range of high doping concentration, when the doping concentration is hihger than a specific value, the conductivity decreases with the increase of the doping concentration of In in ZnO, which is in consistence with the change trend of the experimental results.展开更多
First-principles calculations have been performed to clarify the differences of the electronic structures of Ga-doped ZnO and ZnS. Results show the local density approximation and local density approximation+U calcul...First-principles calculations have been performed to clarify the differences of the electronic structures of Ga-doped ZnO and ZnS. Results show the local density approximation and local density approximation+U calculations are in good qualitative agreement with each other. After doping, impurity states appear near the Fermi level in both ZnO and ZnS cases. When ZnO is doped, the impurity states are delocalized in the whole conduction band. On the contrary, when ZnS is doped, though the p state of Ga is also delocalized, the s state is localized near the Fermi level. Partial charge density distributions of the frontier orbital show the same information. After an exchange of the crystal structures of ZnO and ZnS, results remain unchanged. The localized Ga s state accounts for the bad electrical properties of Ga-doped ZnS.展开更多
Using a first-principle method, the electronic structures and the impurity formation energy of ZnO, ZnO (N), ZnO (N+B), and ZnO (2N+B) have been calculated, based on which the feasibility to obtain p-type ZnO ...Using a first-principle method, the electronic structures and the impurity formation energy of ZnO, ZnO (N), ZnO (N+B), and ZnO (2N+B) have been calculated, based on which the feasibility to obtain p-type ZnO & discussed. According to the results, when ZnO is single doped by N, the acceptor level is deep, and the formation energy is negative, so the ideal p-type ZnO can not be obtained by this way. On the contrary, when 2N+B are codoped into ZnO, the acceptor level becomes much lower, and the formation energy is positive, so it is a better way to obtain p-type ZnO.展开更多
The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. Accor...The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al-N and Ga-N codoping cases, the hole effective mass of In-N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In N codoping展开更多
Aiming at developing p-type semiconductors and modulating the band gap for photoelectronic devices and band engineering, we present the ab initio numerical simulation of the effect of codoping ZnO with Al, N and Mg on...Aiming at developing p-type semiconductors and modulating the band gap for photoelectronic devices and band engineering, we present the ab initio numerical simulation of the effect of codoping ZnO with Al, N and Mg on the crystal lattice and electronic structure. The simulations are based on the Perdew-Burke-Ernzerhof generalised-gradient approximation in density functional theory. Results indicate that electrons close to the Fermi level transfer effectively when Al, Mg, and N replace Zn and O atoms, and the theoretical results were consistent with the experiments. The addition of Mg leads to the variation of crystal lattice, expanse of energy band, and change of band gap. These unusual properties are explained in terms of the computed electronic structure, and the results show promise for the development of next-generation photoconducting devices in optoelectronic information science and technology.展开更多
We investigated the electronic and magnetic properties for O or Zn defect of (Cu, N) or (Cu, F)-co- doped ZnO with the concentration of 2.77% - 8.33% by using the first-principles calculations. The ferromagnetic coupl...We investigated the electronic and magnetic properties for O or Zn defect of (Cu, N) or (Cu, F)-co- doped ZnO with the concentration of 2.77% - 8.33% by using the first-principles calculations. The ferromagnetic coupling of Cu atoms in (Cu, N)-codoped ZnO can be attributed to the hole-mediated double-exchange through the strong 2p-3d coupling between Cu and neighboring O (or N) atoms. The ferromagnetism in Cu-doped ZnO is controllable by changing the carrier density. The Cu magnetic moment in low Cu concentration (2.77%) is increased by the N-doping, while for the F-doping it decreases. For two Cu atoms of Zn0.9445Cu0.0555O with O vacancy, the antiferromagnetic state is more energetically favorable than the ferromagnetic state.展开更多
The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to th...The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of A1, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of A1, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.展开更多
The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors...The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors, thus having no contributions to p-type conductivity. Among all the neutral nitrogen impurities, nitrogen substituting on an oxygen site has the lowest formation energy and the shallowest acceptor level, while nitrogen .substituting on a zinc site has the second-lowest formation energy in oxygen-rich conditions. Nitrogen interstitials are unstable at the tetrahedral site and spontaneously relax into a kick-out configuration. Though nitrogen may occupy the octahedral site, the concentrations will be low for the high formation energy. The charge density distributions in various doping cases are discussed, and self-consistent results are obtained.展开更多
The structural and magnetic properties of the Cu-doped ZnO(ZnO:Cu) under c-axis pressure were studied using first-principle calculations. It was found that the ZnO:Cu undergoes a structural transition from Wurtzit...The structural and magnetic properties of the Cu-doped ZnO(ZnO:Cu) under c-axis pressure were studied using first-principle calculations. It was found that the ZnO:Cu undergoes a structural transition from Wurtzite to Graphite-like structure at a c-axis pressure of 7–8 GPa. This is accompanied by an apparent loss of ferromagnetic stability, indicating a magnetic transformation from a ferromagnetic state to a paramagnetic-like state. Further studies revealed that the magnetic instability is closely related to the variation in crystalline field originated from the structural transition, which is in association with the overlapping of spin–charge density between the Cu^2+ and adjacent O^2-.展开更多
Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of a...Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were also explained using the X-ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results.展开更多
The effect of a second dopant on the magnetic property of Cu-doped ZnO by first-principles calculations based on the density functional theory was studied. It is found that the Cu-doped ZnO shows ferromagnetism due to...The effect of a second dopant on the magnetic property of Cu-doped ZnO by first-principles calculations based on the density functional theory was studied. It is found that the Cu-doped ZnO shows ferromagnetism due to the hybridization between Cu-3d and O-2p orbitals. When Na is introduced to the Cu-doped ZnO system, Cu cations tend to take on a bivalent state. Therefore, the magnetic moments on both Cu and coordinated oxygen sites increase due to Na doping. On the contrary, the magnetic moments decrease dramatically in the (Cu, A1) co-doped ZnO, which can be attributed to the fully occupied 3d states of Cu+ and O-2p states.展开更多
Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was va...Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was varied from 65 to 150 W.The crystallinity and resistivity of ZMWO films greatly depend on sputtering power while the optical transmittance and optical band gap are not sensitive to sputtering power.All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.Considering the crystallinity and the electrical and optical properties,we suggest that the optimal sputtering power in this experiment is 90 W and,at this power,the ZMWO film has the lowest resistivity of 9.8×10^(-4)Ω.cm with a high transmittance of approximately 89%in the visible range.展开更多
Transparent conductive boron-doped ZnO thin films were prepared by sol-gel spin coating method. The effect of doped boron concentration on the properties of the films was systematically discussed. The films were chara...Transparent conductive boron-doped ZnO thin films were prepared by sol-gel spin coating method. The effect of doped boron concentration on the properties of the films was systematically discussed. The films were characterized by X-ray diffraction, atomic force microscopy, spectrophotometry, and Hall effect measurement system. All the doped and undoped ZnO films were of a single hexagonal structure, and showed a preferred orientation of (002). The particle size and surface roughness of the films decreased with increased doped boron concentration. All the films exhibited an average transmittance of approximate 90% in visible-light region and an energy gap of about 3.3 cV. The maximum carrier concentration, the highest carrier mobility and the lowest resistivity were observed at a doped boron concentration of 0.5%(molar fraction). Based on these results, we suggested that the saturation concentration of doped boron in ZnO film is 0.5%(molar fraction).展开更多
基金the National Natural Science Foundation of China(Grant Nos.51261017 and 21261013)the Ministry of Education"Spring Sunshine" Plan Funding,China+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2011BS0104)the College Science Research Project of Inner Mongolia Autonomous Region,China(Grant Nos.NJZY12068 and NJZZ13099)
文摘Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Zn0.875In0.125O are constructed, and the geometry optimizations of the three models are carried out. The total density of states (DOS) and the band structures (BS) are also calculated. The calculation results show that in the range of high doping concentration, when the doping concentration is hihger than a specific value, the conductivity decreases with the increase of the doping concentration of In in ZnO, which is in consistence with the change trend of the experimental results.
文摘First-principles calculations have been performed to clarify the differences of the electronic structures of Ga-doped ZnO and ZnS. Results show the local density approximation and local density approximation+U calculations are in good qualitative agreement with each other. After doping, impurity states appear near the Fermi level in both ZnO and ZnS cases. When ZnO is doped, the impurity states are delocalized in the whole conduction band. On the contrary, when ZnS is doped, though the p state of Ga is also delocalized, the s state is localized near the Fermi level. Partial charge density distributions of the frontier orbital show the same information. After an exchange of the crystal structures of ZnO and ZnS, results remain unchanged. The localized Ga s state accounts for the bad electrical properties of Ga-doped ZnS.
基金Supported by the Foundation for the Excellent Youth Scholars of Anhui Education Office under Grant No.2009SQRZ097ZDthe Foundation of Anhui Province Education Bureau under Grant No.KJ2008B262 the Foundation of Anhui University of Architecture under Grant No.20070601
文摘Using a first-principle method, the electronic structures and the impurity formation energy of ZnO, ZnO (N), ZnO (N+B), and ZnO (2N+B) have been calculated, based on which the feasibility to obtain p-type ZnO & discussed. According to the results, when ZnO is single doped by N, the acceptor level is deep, and the formation energy is negative, so the ideal p-type ZnO can not be obtained by this way. On the contrary, when 2N+B are codoped into ZnO, the acceptor level becomes much lower, and the formation energy is positive, so it is a better way to obtain p-type ZnO.
基金Project supported by the Special Foundation for Young Scientists of Anhui Province,China (Grant No. 2009SQRZ097ZD)the Foundation of Anhui University of Architecture (Grant No. 20070601)
文摘The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al-N and Ga-N codoping cases, the hole effective mass of In-N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In N codoping
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606401)
文摘Aiming at developing p-type semiconductors and modulating the band gap for photoelectronic devices and band engineering, we present the ab initio numerical simulation of the effect of codoping ZnO with Al, N and Mg on the crystal lattice and electronic structure. The simulations are based on the Perdew-Burke-Ernzerhof generalised-gradient approximation in density functional theory. Results indicate that electrons close to the Fermi level transfer effectively when Al, Mg, and N replace Zn and O atoms, and the theoretical results were consistent with the experiments. The addition of Mg leads to the variation of crystal lattice, expanse of energy band, and change of band gap. These unusual properties are explained in terms of the computed electronic structure, and the results show promise for the development of next-generation photoconducting devices in optoelectronic information science and technology.
文摘We investigated the electronic and magnetic properties for O or Zn defect of (Cu, N) or (Cu, F)-co- doped ZnO with the concentration of 2.77% - 8.33% by using the first-principles calculations. The ferromagnetic coupling of Cu atoms in (Cu, N)-codoped ZnO can be attributed to the hole-mediated double-exchange through the strong 2p-3d coupling between Cu and neighboring O (or N) atoms. The ferromagnetism in Cu-doped ZnO is controllable by changing the carrier density. The Cu magnetic moment in low Cu concentration (2.77%) is increased by the N-doping, while for the F-doping it decreases. For two Cu atoms of Zn0.9445Cu0.0555O with O vacancy, the antiferromagnetic state is more energetically favorable than the ferromagnetic state.
文摘The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 ℃. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of A1, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of A1, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.
文摘The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors, thus having no contributions to p-type conductivity. Among all the neutral nitrogen impurities, nitrogen substituting on an oxygen site has the lowest formation energy and the shallowest acceptor level, while nitrogen .substituting on a zinc site has the second-lowest formation energy in oxygen-rich conditions. Nitrogen interstitials are unstable at the tetrahedral site and spontaneously relax into a kick-out configuration. Though nitrogen may occupy the octahedral site, the concentrations will be low for the high formation energy. The charge density distributions in various doping cases are discussed, and self-consistent results are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.51031004 and 51272078)the Natural Science Foundation of Guangdong,China(Grant No.S2012010008124)+3 种基金the National Basic Research Program of China(Grant No.2015CB921202)the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2014)International Science & Technology Cooperation Platform Program of Guangzhou,China(Grant No.2014J4500016)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT1243)
文摘The structural and magnetic properties of the Cu-doped ZnO(ZnO:Cu) under c-axis pressure were studied using first-principle calculations. It was found that the ZnO:Cu undergoes a structural transition from Wurtzite to Graphite-like structure at a c-axis pressure of 7–8 GPa. This is accompanied by an apparent loss of ferromagnetic stability, indicating a magnetic transformation from a ferromagnetic state to a paramagnetic-like state. Further studies revealed that the magnetic instability is closely related to the variation in crystalline field originated from the structural transition, which is in association with the overlapping of spin–charge density between the Cu^2+ and adjacent O^2-.
文摘Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were also explained using the X-ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results.
基金financially supported by the National Natural Science Foundation of China (Nos. 50831002, 51271020, 51071022, and 11174031)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT1106)+2 种基金Beijing Nova Program (No. 2011031)Beijing Natural Science Foundation (No. 2102032)the Fundamental Research Funds for the Central Universities
文摘The effect of a second dopant on the magnetic property of Cu-doped ZnO by first-principles calculations based on the density functional theory was studied. It is found that the Cu-doped ZnO shows ferromagnetism due to the hybridization between Cu-3d and O-2p orbitals. When Na is introduced to the Cu-doped ZnO system, Cu cations tend to take on a bivalent state. Therefore, the magnetic moments on both Cu and coordinated oxygen sites increase due to Na doping. On the contrary, the magnetic moments decrease dramatically in the (Cu, A1) co-doped ZnO, which can be attributed to the fully occupied 3d states of Cu+ and O-2p states.
基金Project supported by the Natural Science Foundation of Shandong Province,China(No.ZR2009GQ011).
文摘Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was varied from 65 to 150 W.The crystallinity and resistivity of ZMWO films greatly depend on sputtering power while the optical transmittance and optical band gap are not sensitive to sputtering power.All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.Considering the crystallinity and the electrical and optical properties,we suggest that the optimal sputtering power in this experiment is 90 W and,at this power,the ZMWO film has the lowest resistivity of 9.8×10^(-4)Ω.cm with a high transmittance of approximately 89%in the visible range.
基金Supported by the National Natural Science Foundation of China(Nos.51002018, 51302024), the Program for Liaoning Excellent Talents in University, China(No.LJQ20122038), the Higher Specialized Research Fund for the Doctoral Program of China(No.20122124110004), the Dalian Science and Technology Plan Project, China(No.2010J21DW008) and the Qinghai Provincial Science and Technology Project, China(No.2012-Z-701).
文摘Transparent conductive boron-doped ZnO thin films were prepared by sol-gel spin coating method. The effect of doped boron concentration on the properties of the films was systematically discussed. The films were characterized by X-ray diffraction, atomic force microscopy, spectrophotometry, and Hall effect measurement system. All the doped and undoped ZnO films were of a single hexagonal structure, and showed a preferred orientation of (002). The particle size and surface roughness of the films decreased with increased doped boron concentration. All the films exhibited an average transmittance of approximate 90% in visible-light region and an energy gap of about 3.3 cV. The maximum carrier concentration, the highest carrier mobility and the lowest resistivity were observed at a doped boron concentration of 0.5%(molar fraction). Based on these results, we suggested that the saturation concentration of doped boron in ZnO film is 0.5%(molar fraction).