This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) ...This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) during storage. The APC values were tested and images of the fish surface were taken when fish were stored at room temperature. Then, images</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span><span><span><span> color-space conversion among RGB, HSV, and L*a*b* color spaces was carried out and analyzed. The results revealed that a* and b* values from the UV-light image decreased linearly during storage. A further regression analysis of these two parameters with APC value demonstrated a good exponential relationship between the a* value and the APC value (R</span><sup><span>2</span></sup><span> = 0.97), followed by the b* (R</span><sup><span>2</span></sup><span> = 0.85). Therefore, our results suggest that the change in color of the fish surface under UV light can be used to assess fish freshness during storage.展开更多
Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offis...Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.展开更多
Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing ...Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing vessel monitoring system(VMS)can monitor and record the navigation information of fishing vessels in real time,and it may be used to improve the accuracy of identifying the state of fishing vessels.If the VMS data and fishing logbook are combined to establish their relationships,then the navigation characteristics and fishing behavior of fishing vessels can be more accurately identified.Therefore,first,a method for determining the state of VMS data points using fishing log data was proposed.Secondly,the relationship between VMS data and the different states of fishing vessels was further explored.Thirdly,the state of the fishing vessel was predicted using VMS data by building machine learning models.The speed,heading,longitude,latitude,and time as features from the VMS data were extracted by matching the VMS and logbook data of three single otter trawl vessels from September 2012 to January 2013,and four machine learning models were established,i.e.,Random Forest(RF),Adaptive Boosting(AdaBoost),K-Nearest Neighbor(KNN),and Gradient Boosting Decision Tree(GBDT)to predict the behavior of fishing vessels.The prediction performances of the models were evaluated by using normalized confusion matrix and receiver operator characteristic curve.Results show that the importance rankings of spatial(longitude and latitude)and time features were higher than those of speed and heading.The prediction performances of the RF and AdaBoost models were higher than those of the KNN and GBDT models.RF model showed the highest prediction performance for fishing state.Meanwhile,AdaBoost model exhibited the highest prediction performance for non-fishing state.This study offered a technical basis for judging the navigation characteristics of fishing vessels,which improved the algorithm for judging the behavior of fishing vessels based on VMS data,enhanced the prediction accuracy,and upgraded the fishery management being more scientific and efficient.展开更多
With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data sourc...With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data source to study the navigation char-acteristics of vessel groups.This study established an identification model to extract the fishing state and intensity information of fishing vessels,based on the AIS data of purse seine fishing vessels,combined with the variables of vessel position,speed and course.Expert experience,spatial statistics and data mining analysis methods were applied to establish the model,and the Western and Cen-tral Pacific Ocean areas were studied.The results showed that the overall accuracy of identification of the fishing state using Support Vector Machine method is higher,and the method has a good modeling effect.The spatial distribution characteristics of the vessels’fishing intensity based on AIS data showed a significant cluster distribution pattern.The obtained high-intensity fishing area can be used as a prediction of purse seine fishing grounds in the Western and Central Pacific areas.Through the processing and research of AIS data,this study provided important scientific support for the identification of fishing state of purse seine fishing vessels.The spatial fishing intensity of fishing vessels based on AIS data can also be used for the analysis of fishery resources and fishing grounds,and further serve the sustainable development of marine fisheries.展开更多
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s...为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。展开更多
文摘This study assessed the feasibility of developing a machine vision system equipped with ultraviolet (UV) light, using changes in fish-surface color to predict aerobic plate count (APC, a standard freshness indicator) during storage. The APC values were tested and images of the fish surface were taken when fish were stored at room temperature. Then, images</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span><span><span><span> color-space conversion among RGB, HSV, and L*a*b* color spaces was carried out and analyzed. The results revealed that a* and b* values from the UV-light image decreased linearly during storage. A further regression analysis of these two parameters with APC value demonstrated a good exponential relationship between the a* value and the APC value (R</span><sup><span>2</span></sup><span> = 0.97), followed by the b* (R</span><sup><span>2</span></sup><span> = 0.85). Therefore, our results suggest that the change in color of the fish surface under UV light can be used to assess fish freshness during storage.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (NRF-2020R1I1A3073313).
文摘Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.
基金Supported by the Public Welfare Technology Application Research Project of China(No.LGN21C190009)the Science and Technology Project of Zhoushan Municipality,Zhejiang Province(No.2022C41003)。
文摘Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing vessel monitoring system(VMS)can monitor and record the navigation information of fishing vessels in real time,and it may be used to improve the accuracy of identifying the state of fishing vessels.If the VMS data and fishing logbook are combined to establish their relationships,then the navigation characteristics and fishing behavior of fishing vessels can be more accurately identified.Therefore,first,a method for determining the state of VMS data points using fishing log data was proposed.Secondly,the relationship between VMS data and the different states of fishing vessels was further explored.Thirdly,the state of the fishing vessel was predicted using VMS data by building machine learning models.The speed,heading,longitude,latitude,and time as features from the VMS data were extracted by matching the VMS and logbook data of three single otter trawl vessels from September 2012 to January 2013,and four machine learning models were established,i.e.,Random Forest(RF),Adaptive Boosting(AdaBoost),K-Nearest Neighbor(KNN),and Gradient Boosting Decision Tree(GBDT)to predict the behavior of fishing vessels.The prediction performances of the models were evaluated by using normalized confusion matrix and receiver operator characteristic curve.Results show that the importance rankings of spatial(longitude and latitude)and time features were higher than those of speed and heading.The prediction performances of the RF and AdaBoost models were higher than those of the KNN and GBDT models.RF model showed the highest prediction performance for fishing state.Meanwhile,AdaBoost model exhibited the highest prediction performance for non-fishing state.This study offered a technical basis for judging the navigation characteristics of fishing vessels,which improved the algorithm for judging the behavior of fishing vessels based on VMS data,enhanced the prediction accuracy,and upgraded the fishery management being more scientific and efficient.
基金supported by the Project of Developing of Tuna Fishing Grounds Forecasting(No.ZD 202101-06).
文摘With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data source to study the navigation char-acteristics of vessel groups.This study established an identification model to extract the fishing state and intensity information of fishing vessels,based on the AIS data of purse seine fishing vessels,combined with the variables of vessel position,speed and course.Expert experience,spatial statistics and data mining analysis methods were applied to establish the model,and the Western and Cen-tral Pacific Ocean areas were studied.The results showed that the overall accuracy of identification of the fishing state using Support Vector Machine method is higher,and the method has a good modeling effect.The spatial distribution characteristics of the vessels’fishing intensity based on AIS data showed a significant cluster distribution pattern.The obtained high-intensity fishing area can be used as a prediction of purse seine fishing grounds in the Western and Central Pacific areas.Through the processing and research of AIS data,this study provided important scientific support for the identification of fishing state of purse seine fishing vessels.The spatial fishing intensity of fishing vessels based on AIS data can also be used for the analysis of fishery resources and fishing grounds,and further serve the sustainable development of marine fisheries.
文摘为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。