期刊文献+
共找到1,072篇文章
< 1 2 54 >
每页显示 20 50 100
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
1
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
下载PDF
Development of an Artificial Fish Swarm Algorithm Based on aWireless Sensor Networks in a Hydrodynamic Background
2
作者 Sheng Bai Feng Bao +1 位作者 Fengzhi Zhao Miaomiao Liu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期935-946,共12页
The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor net... The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent. 展开更多
关键词 Artificial fish swarm algorithm wireless sensor network network measurement HYDRODYNAMICS
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
3
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
Intelligent approach of score-based artificial fish swarm algorithm(SAFSA)for Parkinson’s disease diagnosis 被引量:1
4
作者 Syed Haroon Abdul Gafoor Padma Theagarajan 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期540-561,共22页
Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resu... Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient. 展开更多
关键词 Parkinson disease dysphonia features Feature subset selection Score-based artificial fish swarm algorithm(SAFSA) Singular value decomposition(SVD) Classification
原文传递
Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization Algorithm for Secured Free Scale Networks against Malicious Attacks
5
作者 Ganeshan Keerthana Panneerselvam Anandan Nandhagopal Nachimuthu 《Computers, Materials & Continua》 SCIE EI 2021年第1期903-917,共15页
Due to the recent proliferation of cyber-attacks,highly robust wireless sensor networks(WSN)become a critical issue as they survive node failures.Scale-free WSN is essential because they endure random attacks effectiv... Due to the recent proliferation of cyber-attacks,highly robust wireless sensor networks(WSN)become a critical issue as they survive node failures.Scale-free WSN is essential because they endure random attacks effectively.But they are susceptible to malicious attacks,which mainly targets particular significant nodes.Therefore,the robustness of the network becomes important for ensuring the network security.This paper presents a Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization(RHAFS-SA)Algorithm.It is introduced for improving the robust nature of free scale networks over malicious attacks(MA)with no change in degree distribution.The proposed RHAFS-SA is an enhanced version of the Improved Artificial Fish Swarm algorithm(IAFSA)by the simulated annealing(SA)algorithm.The proposed RHAFS-SA algorithm eliminates the IAFSA from unforeseen vibration and speeds up the convergence rate.For experimentation,free scale networks are produced by the Barabási–Albert(BA)model,and real-world networks are employed for testing the outcome on both synthetic-free scale and real-world networks.The experimental results exhibited that the RHAFS-SA model is superior to other models interms of diverse aspects. 展开更多
关键词 Free scale networks ROBUSTNESS malicious attacks fish swarm algorithm
下载PDF
考虑系统稳定边界的同步调相机励磁与升压变参数联合优化 被引量:1
6
作者 潘学萍 许一 +3 位作者 赵天骐 王宣元 谢欢 郭金鹏 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期45-54,共10页
现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先... 现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先,推导了基于Park模型下调相机的无功频域特性,与6阶实用模型下的无功频域特性对比,基于调相机的Park模型可提升调相机动态无功特性的分析精度。然后,提出根据调相机并网系统的稳定边界确定参数的优化区间,采用频域灵敏度方法确定重点参数,并基于人工鱼群算法进行参数优化。最后,通过仿真结果表明,励磁系统与升压变参数的联合优化,可获得与仅优化电磁参数时相近的调相机动态无功性能,验证了电磁参数优化的可替代性,从而降低调相机的制造成本,扩大同步调相机的应用场合和范围。 展开更多
关键词 分布式调相机 动态无功特性 参数优化 无功电流增益 人工鱼群算法
下载PDF
基于PSO与AFSA的GNSS整周模糊度种群融合优化算法
7
作者 郭迎庆 詹洋 +3 位作者 张琰 王译那 徐赵东 李今保 《工程科学学报》 EI CSCD 北大核心 2024年第12期2246-2256,共11页
载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人... 载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人工鱼群算法(Artificial fish swarm algorithm, AFSA)全局优化性能好但收敛速度慢,因此融合两种算法的优点,提出一种GNSS整周模糊度种群融合优化算法(PSOAF).首先,通过载波相位双差方程求解整周模糊度的浮点解和对应的协方差矩阵.然后,采用反整数Cholesky算法对模糊度浮点解作降相关处理.其次,针对整数最小二乘估计的不足通过优化适应度函数来提高算法的收敛性和搜索性能.最后,通过PSOAF算法对整周模糊度进行解算.通过经典算例和试验研究表明:PSOAF算法可以更快地收敛于最优解,搜索效率也更为出色,解算的基线精度可以控制在10 mm以内,在短基线的实际情况下具有较高的应用价值. 展开更多
关键词 全球导航卫星系统(GNSS) 整周模糊度 粒子群算法 人工鱼群算法 融合算法
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
8
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
基于改进小波神经网络的实时系统任务流量预测方法
9
作者 李丹 陈勃琛 潘广泽 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期208-214,共7页
针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小... 针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小波预测模型关键参数进行优化,避免陷入局部最优解,最终构建一种人工鱼群算法改进的小波神经网络任务流量预测系统。利用提出的预测模型开展实时任务流量预测对比仿真实验,实验结果表明,建立的基于改进小波神经网络的实时系统任务流量预测系统对非周期实时任务具有较高的预测精度,预测效果优于原始小波神经网络模型及T-S模糊神经网络模型。 展开更多
关键词 小波神经网络 人工鱼群算法 实时系统 流量预测
下载PDF
基于CSA-AFSA算法的集装箱港口连续型泊位分配优化
10
作者 初良勇 章嘉文 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第10期61-69,共9页
为提升集装箱港口运营效率,笔者研究了考虑潮汐因素与泊位偏好的连续型泊位分配问题。引入了船舶时空矩形不可重叠约束和潮汐时间窗约束,构建以最小化船舶等待、延迟离港、泊位偏离以及在港期间油耗费用和最小为目标的混合整数线性规划... 为提升集装箱港口运营效率,笔者研究了考虑潮汐因素与泊位偏好的连续型泊位分配问题。引入了船舶时空矩形不可重叠约束和潮汐时间窗约束,构建以最小化船舶等待、延迟离港、泊位偏离以及在港期间油耗费用和最小为目标的混合整数线性规划模型;根据模型特征,采用CPLEX求解软件、鱼群算法、布谷鸟搜索算法和布谷鸟鱼群混合算法进行求解,以计划周期为36 h的20个不同规模的船舶到港数据为研究算例,通过算例求解得到符和潮汐时间窗、泊位偏好等要求的泊位分配方案。算例求解表明:算例规模较小时,CPLEX可以在较短时间内求出最优泊位分配方案;算例规模较大时,CPLEX求解时间较长,布谷鸟鱼群混合算法可以在平均3 min内求出与CPLEX差距为0.39%~4.20%的次优解;不同算法间的对比表明,布谷鸟鱼群混合算法求解能力更优,混合算法所得泊位分配方案中,乘潮船舶的进出港时刻均在潮汐高水位时段,且85%以上的船舶在偏好泊靠点200 m内接受装卸服务。 展开更多
关键词 港口与航道工程 布谷鸟鱼群混合算法 连续型泊位分配 混合整数线性规划模型 潮汐因素 泊位偏好
下载PDF
基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究
11
作者 张天瑞 乔文澍 《制造技术与机床》 北大核心 2024年第5期152-159,共8页
基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗... 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 展开更多
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法
下载PDF
基于人工鱼群算法的篮球跳投轨迹实时跟踪
12
作者 张龙 《信息技术》 2024年第5期104-109,共6页
篮球运动轨迹跟踪方法由于轨迹特征提取效果差,导致跟踪误差高,提出一种基于人工鱼群算法的篮球跳投轨迹实时跟踪方法。提取三维坐标系下图像中篮球边缘轮廓信息,通过滤波函数消除篮球跳投图像噪声,基于人工鱼群算法提取图像中篮球跳投... 篮球运动轨迹跟踪方法由于轨迹特征提取效果差,导致跟踪误差高,提出一种基于人工鱼群算法的篮球跳投轨迹实时跟踪方法。提取三维坐标系下图像中篮球边缘轮廓信息,通过滤波函数消除篮球跳投图像噪声,基于人工鱼群算法提取图像中篮球跳投轨迹特征,寻找篮球运动轨迹的最优解集,改进篮球实时跟踪匹配路径,形成轨迹跟踪函数。实验结果可知,该方法的平均轨迹跟踪误差为18.28mm,与常规方法相比降低了6.22mm以上。因此,该跟踪方法的篮球轨迹跟踪精度更高,并且实时跟踪轨迹与真实轨迹更吻合。 展开更多
关键词 人工鱼群算法 篮球跳投 滤波函数 运动轨迹 实时跟踪
下载PDF
超网络体系作战下的打击目标优选模型 被引量:2
13
作者 高泽伦 郑少秋 +1 位作者 梁汝鹏 黄炎焱 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期182-189,共8页
针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效... 针对当前进行海上作战体系目标优选分析与决策时对打击代价考虑不足的问题,提出综合考虑目标节点重要度和打击费效度的网络节点分析模型。利用超网络构建海上作战体系网络模型,通过度和介数等指标评估网络中节点的重要度;利用打击费效比为指标评估网络中节点的打击代价,进而将目标分析与选择问题转化为多目标优化问题,建立寻优模型,并通过人工鱼群算法进行寻优求解。最后对模型进行案例仿真应用,通过专家Delphi法评估检验,结果表明所建立的模型方法可行,对水面舰队体系的目标分析与选择具有借鉴作用。 展开更多
关键词 目标选择 超网络 打击代价 人工鱼群算法 多目标优化
下载PDF
基于神经网络和人工鱼群算法的惯性延时微通道优化
14
作者 赵川霆 聂伟荣 +2 位作者 袁君鑫 席占稳 曹云 《探测与控制学报》 CSCD 北大核心 2024年第3期33-39,44,共8页
为了保证中、小口径弹引信的炮口安全性控制要求,设计了具有肋板阻尼结构的惯性延时微通道,同时为了保证其具有稳定的延时性能,研究了该微通道在高离心转速下的延时响应性能。采用了神经网络模型和人工鱼群算法对蛇形微通道内肋板的结... 为了保证中、小口径弹引信的炮口安全性控制要求,设计了具有肋板阻尼结构的惯性延时微通道,同时为了保证其具有稳定的延时性能,研究了该微通道在高离心转速下的延时响应性能。采用了神经网络模型和人工鱼群算法对蛇形微通道内肋板的结构位置进行优化设计。用两相流水平集模型以微通道的延迟时间为研究对象进行了模拟仿真,得到180组样本数据,分析发现肋板结构在微通道内的不同位置与延迟时间呈现出高度的非线性关系。根据样本数据建立神经网络模型用以拟合设计变量与优化目标之间的映射函数,并采用人工鱼群算法对神经网络模型拟合的映射函数的参数进行优化。结果表明,经过结构优化之后,在1 000 g离心环境下微通道中流体的延迟时间从最短的11.446 ms提升到了25.054 ms,延时效果得到了显著提升。最后研究了优化后的结构在中、小口径弹引信使用环境下的延时特性,验证了其满足大部分中、小口径弹引信的延时控制要求。 展开更多
关键词 惯性 阻尼结构 肋板 延时微通道 人工鱼群算法 神经网络
下载PDF
基于AFSA-SVM动态光谱的血液识别研究
15
作者 马焕臻 闫薪如 +7 位作者 辛英健 方沛沛 王泓鹏 王一安 段明康 贾建军 何继业 万雄 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1877-1882,共6页
血液是一种受管制的特殊遗传生物资源。针对传统血液光谱检测中易氧化变质的问题,采用基于仿生血管的动态共聚焦拉曼荧光光谱,开展了猪、马、鸽、鸡、鸭、鹅等六种家禽家畜的血液物种鉴别研究。原始光谱的预处理过程包括去基线、平滑和... 血液是一种受管制的特殊遗传生物资源。针对传统血液光谱检测中易氧化变质的问题,采用基于仿生血管的动态共聚焦拉曼荧光光谱,开展了猪、马、鸽、鸡、鸭、鹅等六种家禽家畜的血液物种鉴别研究。原始光谱的预处理过程包括去基线、平滑和归一化等。采用线性判别分析对光谱数据进行降维处理,继而用支持向量机建立识别模型,选用高斯核函数,通过人工鱼群算法优化支持向量机的参数C和γ,使其分类准确率最高,最优的C和γ分别为0.2和0.134。人工鱼群-支持向量机模型识别准确率达到97.2%,基于仿生血管的动态共聚焦拉曼荧光光谱可以满足血液安全高效的检测要求,用人工鱼群算法优化支持向量机参数的算法模型表现出较好的分类效果。 展开更多
关键词 人工鱼群算法 共聚焦拉曼光谱 支持向量机
下载PDF
基于改进人工鱼群算法的蠕虫机器人路径规划
16
作者 姜晓东 任奕辰 朱晓东 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期55-63,共9页
针对人工鱼群算法在机器人路径规划中存在路径长、精度不高、易陷入局部最优等问题,提出了一种改进的人工鱼群算法,旨在提高算法效率及精度。首先,在算法觅食行为中加入寻优循环,减少算法在路径规划中选取位置点的随机性,使机器人能够... 针对人工鱼群算法在机器人路径规划中存在路径长、精度不高、易陷入局部最优等问题,提出了一种改进的人工鱼群算法,旨在提高算法效率及精度。首先,在算法觅食行为中加入寻优循环,减少算法在路径规划中选取位置点的随机性,使机器人能够更快地走向目标点;其次,融合禁忌搜索算法,通过引入禁忌表来记录算法陷入局部最优的路径,使算法在选取新位置点时能够避开局部最优区域,避免算法在局部过度循环,同时对规划出的路径进行优化处理,删去重复栅格点之间的路径,保证路径中没有重复的栅格点;最后,将改进后的人工鱼群算法应用在一种新型的三维栅格地图中。实验结果表明:相较于其他对比算法,在地图1、2、3中改进人工鱼群算法所取得的平均路径长度分别减少了10%、15%、30%,在复杂地图中路径规划的成功率提高了75%。 展开更多
关键词 蠕虫机器人 人工鱼群算法 路径规划 禁忌搜索 栅格地图
下载PDF
基于改进Fish-Search算法的机弹协同航线规划 被引量:2
17
作者 孙涛 谢晓方 孙永芹 《弹箭与制导学报》 CSCD 北大核心 2010年第3期203-206,共4页
文中提出利用改进的鱼群算法解决一类机弹协同问题中飞机协同航线规划问题的方法。首先对此类协同问题进行了数学描述,综合考虑了机弹协同中的可通视性、航线危险代价、最大协同距离和机弹相对方位等多种关键因素,建立了机弹协同规划中... 文中提出利用改进的鱼群算法解决一类机弹协同问题中飞机协同航线规划问题的方法。首先对此类协同问题进行了数学描述,综合考虑了机弹协同中的可通视性、航线危险代价、最大协同距离和机弹相对方位等多种关键因素,建立了机弹协同规划中飞机航线的约束条件和评价指标;针对此类规划问题的特点,提出了利用鱼群算法进行求解的方法;通过对鱼群算法进行禁忌公告和生存机制等改进,提高了规划算法的收敛速度,对改进前后的算法进行了仿真对比;最后,通过仿真证明文中所提出的改进算法能够解决此类机弹协同航线规划问题。 展开更多
关键词 机弹协同 鱼群算法 航线规划 收敛速度 仿真
下载PDF
基于优化TQWT及孪生SVM的有载分接开关机械故障诊断
18
作者 余长厅 黎大健 +2 位作者 陈梁远 张磊 赵坚 《高压电器》 CAS CSCD 北大核心 2024年第10期110-118,共9页
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s... 为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。 展开更多
关键词 有载分接开关 机械故障 振动信号 品质因数可调小波变换 人工鱼群算法 孪生支持向量机
下载PDF
基于人工鱼群的自适应密度峰值聚类算法
19
作者 何凯琳 张正军 +1 位作者 位雅 唐莉 《计算机工程与设计》 北大核心 2024年第1期110-119,共10页
针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,... 针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,根据两个相邻簇的簇间边界区域密度与簇平均密度构造簇间合并规则,利用人工鱼群算法寻找使改进轮廓系数指标达到最大值时的最优截断距离d_(c)。在合成数据集和真实数据集上的实验结果表明,AFSADPC算法具有较好的聚类效果。 展开更多
关键词 密度峰值 聚类算法 人工鱼群算法 截断距离 幂律分布 簇合并策略 轮廓系数
下载PDF
基于鸟群人工鱼群算法的区块链移动边缘计算卸载模型
20
作者 孔小爽 袁健 《电子科技》 2024年第8期26-33,共8页
计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于... 计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。 展开更多
关键词 区块链 移动边缘计算 计算卸载 共识机制 鸟群算法 人工鱼群算法 任务时延能耗 优化问题
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部