The levels of fluoride in various ground water sources in East Africa are above the World Health Organization upper limit of 1.5 mg/L. Research on diverse defluoridation technologies has proven that adsorption stands ...The levels of fluoride in various ground water sources in East Africa are above the World Health Organization upper limit of 1.5 mg/L. Research on diverse defluoridation technologies has proven that adsorption stands out as an affordable, efficient, and facile technology. Fish swim bladder-derived porous carbon (FBPC) activated by KOH and surface oxidized by nitric acid was successfully investigated as an adsorbent for defluoridation at portable water pH. The FBPC was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). Batch methods were used to study physiochemical parameters viz., initial fluoride concentration, temperature, adsorbate dosage, contact time and pH. Freundlich, Temkin, Langmuir and Dubinin-Radushkevich isotherms were plotted and analyzed to understand the adsorption process. Bangham, Weber Morris, pseudo first and second-order models were used to elucidate the kinetics of adsorption. Optimal conditions for fluoride removal were found to be: pH of 6, FBPC adsorbent dose of 5.0 g/L and contact time of 50 min. Flouride adsorption followed pseudo second-order kinetic model and Langmuir isotherm best describes the adsorption process.展开更多
A novel enzymatic method for extraction and preparation of fish collagen from swim bladder revealed the occurrence of α, β and γ bands with approximately 12.1 g/100g collagen corresponding to 89% of collagen and th...A novel enzymatic method for extraction and preparation of fish collagen from swim bladder revealed the occurrence of α, β and γ bands with approximately 12.1 g/100g collagen corresponding to 89% of collagen and thus confirmed the nativity and purity of the fish collagen. FT-IR studies confirmed the retention of all three amide bands of I, II and III, and triple helixcity. UN-crosslinked and UV-crosslinked fish collagen membrane records a very high temperature of helix denaturation at 197℃ and 215℃, shrinkage temperature at 50℃ ± 3.2℃ and 62℃ ± 2.7℃ and tensile strength at 16.89 ± 2.5 and 120.02 ± 1.0 Kg/cm2 respectively. Fish collagen matrix promoted NIH 3T3 and L6 cellular growth and proliferation. The study indicates that availability of pure fish collagen could replace bovine collagen in tissue engineering applications.展开更多
文摘The levels of fluoride in various ground water sources in East Africa are above the World Health Organization upper limit of 1.5 mg/L. Research on diverse defluoridation technologies has proven that adsorption stands out as an affordable, efficient, and facile technology. Fish swim bladder-derived porous carbon (FBPC) activated by KOH and surface oxidized by nitric acid was successfully investigated as an adsorbent for defluoridation at portable water pH. The FBPC was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). Batch methods were used to study physiochemical parameters viz., initial fluoride concentration, temperature, adsorbate dosage, contact time and pH. Freundlich, Temkin, Langmuir and Dubinin-Radushkevich isotherms were plotted and analyzed to understand the adsorption process. Bangham, Weber Morris, pseudo first and second-order models were used to elucidate the kinetics of adsorption. Optimal conditions for fluoride removal were found to be: pH of 6, FBPC adsorbent dose of 5.0 g/L and contact time of 50 min. Flouride adsorption followed pseudo second-order kinetic model and Langmuir isotherm best describes the adsorption process.
文摘A novel enzymatic method for extraction and preparation of fish collagen from swim bladder revealed the occurrence of α, β and γ bands with approximately 12.1 g/100g collagen corresponding to 89% of collagen and thus confirmed the nativity and purity of the fish collagen. FT-IR studies confirmed the retention of all three amide bands of I, II and III, and triple helixcity. UN-crosslinked and UV-crosslinked fish collagen membrane records a very high temperature of helix denaturation at 197℃ and 215℃, shrinkage temperature at 50℃ ± 3.2℃ and 62℃ ± 2.7℃ and tensile strength at 16.89 ± 2.5 and 120.02 ± 1.0 Kg/cm2 respectively. Fish collagen matrix promoted NIH 3T3 and L6 cellular growth and proliferation. The study indicates that availability of pure fish collagen could replace bovine collagen in tissue engineering applications.