期刊文献+
共找到1,590篇文章
< 1 2 80 >
每页显示 20 50 100
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
1
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations Method Direct Integration Differential Equations beams of Variable stiffness Quadratic Parabola Impulse and Harmonic Loads
下载PDF
Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms 被引量:6
2
作者 WANG Nianfeng LIANG Xiaohe ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期776-784,共9页
Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtain... Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion. 展开更多
关键词 corrugated flexure beam stiffness analysis compliant mechanisms
下载PDF
Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions 被引量:3
3
作者 Hu DING Minhui ZHU Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期911-924,共14页
Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discusse... Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discussed for the first time. The beam is supported by torsional springs and vertical springs at both ends. By modifying the stiffness of the springs, generalized boundaries can replace those classical boundaries. Dynamic stiffness matrices are, respectively, established for axially moving Timoshenko beams and Euler-Bernoulli (EB) beams with generalized boundaries. In order to verify the applicability of the EB model, the natural frequencies of the axially moving Timoshenko beam and EB beam are compared. Furthermore, the effects of constrained spring stiffness on the vibration frequencies of the axially moving beam are studied. Interestingly, it can be found that the critical speed of the axially moving beam does not change with the vertical spring stiffness. In addition, both the moving speed and elastic boundaries make the Timoshenko beam theory more needed. The validity of the dynamic stiffness method is demonstrated by using numerical simulation. 展开更多
关键词 AXIALLY moving beam natural frequency TIMOSHENKO beam model DYNAMIC stiffness matrix generalized boundary condition
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
4
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
下载PDF
Equivalent bending stiffness of simply supported preflex beam bridge with variable cross-section 被引量:5
5
作者 杨明 黄侨 王德军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期13-17,共5页
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ... In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas. 展开更多
关键词 variable cross-section preflex beam equivalent moment of inertia equivalent bending stiffness
下载PDF
Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method 被引量:1
6
作者 S Chakraverty Laxmi Behera 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期218-227,共10页
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Redd... We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio. 展开更多
关键词 differential quadrature method exponentially varying stiffness different beam theories
下载PDF
The theoretical analysis of dynamic response on cantilever beam of variable stiffness 被引量:1
7
作者 Huo Bingyong Yi Weijian 《Engineering Sciences》 EI 2014年第2期93-96,共4页
The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- effi... The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode. 展开更多
关键词 stiffness function differential equation with variable coefficients cantilever beam
下载PDF
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements 被引量:2
8
作者 Guo Zongming Zhang Yaoting +1 位作者 Lu Jiezhi Fan Jian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期697-714,共18页
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce... To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading. 展开更多
关键词 fiber beam-column element stiffness degradation damage index reinforced concrete column reinforced concrete frame
下载PDF
Damage detection method in complicated beams with varying flexural stiffness
9
作者 冯侃 励争 +1 位作者 高桂云 苏先樾 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期469-478,共10页
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying... A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications. 展开更多
关键词 nondestructive testing modal strain energy varying flexural stiffness beam fiber reinforced composite material wind turbine blade
下载PDF
Simulation of Fatigue Stiffness Degradation in Prestressed Concrete Beams under Cyclic Loading
10
作者 Junqing Lei Shanshan Cao +1 位作者 Guoshan Xu Yun Xiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期67-74,共8页
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea... In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions. 展开更多
关键词 prestressed concrete beam FATIGUE stiffness degradation simulation damaged concrete elastic modulus steel effective residual area deflection prediction
下载PDF
Performance Degradation Alarming M ethod Based on Local Flexural Stiffness Identification for Beams
11
作者 马中军 杨庆年 张铟 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期311-315,共5页
Uncertain local flexural stiffness is recognized as one of the main barriers against the application of existing damage detection and performance degradation alarming techniques to real-world beams.Therefore,damage lo... Uncertain local flexural stiffness is recognized as one of the main barriers against the application of existing damage detection and performance degradation alarming techniques to real-world beams.Therefore,damage localization of beams with original uncertainty has been investigated to ensure their safety.For the beam before serving,it should be simply supported and subject to static load.Based on the concept of suppositional partition,a new loading pattern and mid-span displacement data processing method has been proposed.Actual local flexural stiffness value of each partition can be obtained by solving a set of linear equations.The obtained stiffness data can be used to establish the finite element model of beams.Subsequently,dynamic excitation and mode identification should be carried out for the beam in service.Mode shape curvature index is employed to detect the position of damage.It was validated by example that actual damage and original uncertainty of local flexural stiffness can be differentiated by this new method effectively.The combination of static load and dynamic excitation can keep the serviceability of beam. 展开更多
关键词 beam DAMAGE stiffness uncertainty curvatureCLC number:TU317Document code:AArticle ID:1672-5220(2013)04-0311-05
下载PDF
Assessment of Existing Bridge’s Beam Bending Stiffness Using Crack Characteristics
12
作者 Donglian Tan 《Engineering(科研)》 2020年第2期82-89,共8页
At present, the bearing capacity evaluation is mainly based on load detection, which requires closed traffic and has certain risks. With the increase of service time, the cracks of reinforced concrete beam bridge will... At present, the bearing capacity evaluation is mainly based on load detection, which requires closed traffic and has certain risks. With the increase of service time, the cracks of reinforced concrete beam bridge will gradually develop and the stiffness will reduce, resulting in the decrease of bearing capacity. Therefore, in this paper, the calculation of stiffness reduction coefficient by using crack characteristic parameters, which provides basic data for bearing capacity evaluation, has been studied. In this paper, using regression analysis through fracture characteristics of four model beam observation and test load-displacement curve characteristic parameters, crack flexural rigidity of the beam bridge relationship has been set up. The qualitative assessment based appearance of cracks in the structure of checks has been converted to quantitative assessment. And compared with the test results of a real bridge, comparative results show that the assessment is objective and reliable. It makes the assessment more objective and scientific. A new way of Quantitative assessment of the structural performance has been provided for a large number of existing reinforced concrete beam bridge. 展开更多
关键词 beam Bridge CRACK CHARACTERISTICS BENDING stiffness ASSESSMENT
下载PDF
Bending Stiffness of Truss-Reinforced Steel-Concrete Composite Beams
13
作者 Francesco Trentadue Erika Mastromarino +3 位作者 Giuseppe Quaranta Floriana Petrone Giorgio Monti Giuseppe Carlo Marano 《Open Journal of Civil Engineering》 2014年第3期285-300,共16页
This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work... This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed. 展开更多
关键词 Bending stiffness STEEL-CONCRETE Composite beams PRECAST Floor Systems
下载PDF
A Comparative Study on the Truck Frame Stiffness with Solid and Beam Element FEA Models
14
作者 Shengyong Zhang Zack Gertzen +1 位作者 Adam Manering Cristian Jongkind 《Modern Mechanical Engineering》 2023年第3期55-61,共7页
Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid ... Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid element FEA models are built upon frame configuration details which are not feasible in the preliminary design stage, partially because of limited available design data of frames and heavy computation costs. This research develops 1D beam element FEA models for simulating frame structures. In this paper, the CAD model of a truck frame is first created. The solid element FEA analysis, which is adopted as the baseline in this study, is subsequently conducted for the stiffness of the frame, Next, beam element FEA analysis is performed for validating the feasibility of the beam element FEA model by comparing the results from the solid and beam element FEA models. It is found that the beam element FEA model can predict the frame stiffness with acceptable accuracy and reduce the computation cost significantly. 展开更多
关键词 FEA Truck Frame Structural stiffness 3D Solid Element 1D beam Element
下载PDF
DIFFERENCE DISCRETE SYSTEM OF EULER-BEAM WITH ARBITRARY SUPPORTS AND SIGN-OSCILLATORY PROPERTY OF STIFFNESS MATRICES
15
作者 王其申 王大钧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期393-398,共6页
The difference discrete system of Euler-beam with arbitrary supports was constructed by using the two order central difference formulas. This system is equivalent to the spring-mass-rigidrod model. By using the theory... The difference discrete system of Euler-beam with arbitrary supports was constructed by using the two order central difference formulas. This system is equivalent to the spring-mass-rigidrod model. By using the theory of oscillatory matrix, the signoscillatory property of stiffness matrices of this system was proved, and the necessary and sufficient condition for the system to be positive was obtained completely. 展开更多
关键词 Euler-beam difference discrete systems stiffness matrices sign-oscillatory property
下载PDF
STIFFNESS EQUATION OF FINITE SEGMENT FOR FLEXIBLE BEAM-FORMED STRUCTURAL ELEMENTS
16
作者 Yun Chao Zong Guanghua (Institute of Robotics, Beijing University of Aeronautics and Astronautics Liu Youwu (Tianjin University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第1期17-24,共8页
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc... The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process. 展开更多
关键词 beam-formed structural element Finite segment stiffness equation Shape function
下载PDF
New tangent stiffness matrix for geometrically nonlinear analysis of space frames 被引量:1
17
作者 顾建新 陈绍礼 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期480-485,共6页
A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order... A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member. 展开更多
关键词 beam elements space frames tangent stiffness matrix flexural-torsional buckling second-order effects geometric nonlinearity
下载PDF
Evaluation of reclaimed asphalt pavement binder stiffness without extraction and recovery 被引量:1
18
作者 马涛 黄晓明 U.B.Hussain 《Journal of Central South University》 SCIE EI CAS 2011年第4期1316-1320,共5页
A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special m... A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments. 展开更多
关键词 aged binder reclaimed asphalt pavement MORTAR stiffness Bending beam Rheometer blending chart
下载PDF
The Effects of the Longitudinal Axis of Loading upon Bending, Shear and Torsion of a Thin-Walled Cantilever Channel Beam
19
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第5期73-96,共24页
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall... Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section. 展开更多
关键词 Thin-Aluminium Channels Cantilever beam Bending Shear Torsion WARPING BIMOMENT Flexural Axis Centre of Twist CENTROID Shear Centre Torsional stiffness Constrained Stress
下载PDF
基于离散Beam梁法的变截面钢板弹簧建模及仿真 被引量:1
20
作者 龚海清 杨啟梁 +2 位作者 陈彦龙 袁爽 罗仁宏 《武汉科技大学学报》 CAS 北大核心 2015年第4期294-296,306,共4页
采用离散Beam梁法在多体动力学软件ADAMS中建立变截面钢板弹簧的动力学模型。以某轻型客车的后悬架变截面钢板弹簧为例,仿真计算其刚度,并与试验测试结果进行对比。结果表明,该方法用于变截面钢板弹簧的建模具有有效性。
关键词 钢板弹簧 变截面刚度 离散beam梁法 ADAMS 动力学模型
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部