期刊文献+
共找到2,575篇文章
< 1 2 129 >
每页显示 20 50 100
Recent Advances in Computational Simulation of Macro-,Meso-,and Micro-Scale Biomimetics Related Fluid Flow Problems 被引量:5
1
作者 Y. Y. Yan 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期97-107,共11页
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r... Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed. 展开更多
关键词 biomimetics computational simulation macro- meso- MICRO-SCALE HYDROPHOBIC SURFACES
下载PDF
The Concept of Electroosmotically Driven Flow and Its Application to Biomimetics 被引量:4
2
作者 Y.Y.Yan J.B.Hull 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第1期46-52,共7页
The concept of electroosmotically driven flow is built around understanding how the ionized particles or fluid are driven to flow by electroosmosis forces. Apart from the major applications of this concept to micro f... The concept of electroosmotically driven flow is built around understanding how the ionized particles or fluid are driven to flow by electroosmosis forces. Apart from the major applications of this concept to micro flow control elements which have been explored in parallel with the rapid developments in micro fabrication technologies, the present focus is on its application to biomimetics. As soil animals (in fact all living creatures) such as earthworms and dung beetles carry bioelectricity, the relative movement between the creatures and the surrounding soil which is a multi-component medium with moist content will generate electrophoresis or electroosmosis forces. Such forces drive the ionized moist content, normally water, to migrate from positive to negative poles under the action of electric double layer (EDL) effect, and effectively reduce the adhesion or drag.Predicting the electroosmotically driven flow in the vicinity of biological and animal surfaces is a key problem of drag/adhesion reduction and biomimetics design. The aim of this article is to demonstrate how the theory of electroosmotically driven flow has developed and to describe its broader significance for anti adhesion of soil animals and biomimetics design of soil machinery tools. 展开更多
关键词 electroosmosis FLOW biomimetics ANTI-ADHESION MODELLING
下载PDF
3D Modelling of Biological Systems for Biomimetics 被引量:2
3
作者 Kevin Hapeshi Ashok K.Bhattacharya 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第1期20-40,共21页
With the advanced development of computer-based enabling technologies, many engineering, medical, biology, chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many researc... With the advanced development of computer-based enabling technologies, many engineering, medical, biology, chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems. To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics. 展开更多
关键词 biomimetics 3D modelling 3D scanners 3D geometry computation biological systems
下载PDF
The structural basis of oscillation damping in plant stems-biomechanics and biomimetics
4
作者 Hanns-Christof Spatz Anton Emanns Olga Speck 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第3期149-158,共9页
Oscillations and their damping were investigated for plant stems of Cyperus alternifolius L., Equisetum hyemale L., Equisetum fluviatile L., Juncus effuses L., Stipa gigantea Link, and Thamnocalamus spathaceus (Franc... Oscillations and their damping were investigated for plant stems of Cyperus alternifolius L., Equisetum hyemale L., Equisetum fluviatile L., Juncus effuses L., Stipa gigantea Link, and Thamnocalamus spathaceus (Franch.) Soderstr. With the exception of T. spathaceus, mechanical damping of the oscillation of individual plant stems, even without side organs, leaves or inflorescences, is quite effective. Our experiments support the hypothesis that embedding stiff sclerenchymatous elements in a more compliant parenchymatous matrix provides the structural basis for the dissipation of mechanical energy in the plant stem. As an application the naturally occurring structures were mimicked in a compound material made from hemp fabrics em- bedded in polyurethane foam, cured under pressure. Like its natural model it shows plastic deformability and viscoelastic be- haviour. In particular the material is characterized by a remarkably high shock absorption capacity even for high impact loads. 展开更多
关键词 BIOMECHANICS biomimetics compound materials damped oscillations plants shock absorption viscoelasticity.
下载PDF
Bacterial Surface Layer Proteins: From Moonlighting to Biomimetics: A New Horizonto Lead
5
作者 Nimisha Gaur Ankit Sharma Barkha Singhal 《Advances in Bioscience and Biotechnology》 2018年第8期352-372,共21页
The landmark discovery of moonlighting proteins embarks the significant progress in understanding the biological complexity and their closed-circuit analysis. The growing continuum in the variety of moonlighting funct... The landmark discovery of moonlighting proteins embarks the significant progress in understanding the biological complexity and their closed-circuit analysis. The growing continuum in the variety of moonlighting functions paved the way for further elucidation of structural-functional aspects of protein evolution and design of proteins with novel functions. Currently, the moonlighting functions in various adhesive properties of surface layer proteins, an essential component of cell surface architecture of archaea and all phylogenetic groups of eubacteria become more prominently recognized. The remarkable credentials of surface layer proteins to self-assemble into supramolecular structures at nano-scale dimension have been exploited for the production of smart biomaterials in the form of biomimetics has been thrust area of research. The finely tuned topological features in terms of shape, size, geometry and surface chemistry of surface layer proteins are crucial for the production of biomimetics. The current developments of biomimetic lipid bilayers and composite membranes find applicability in understanding the functional dynamism of evolutionary relationship of bacterial cell envelopes and vaccine development, drug development and drug delivery. Though the development of biomimetics embraces fascination but faces with technological challenges. The plethora of literature has been available for the moonlighting aspects and nano-technological applications separately but none of the review describes towards the rhythmic transition from moonlighting functions of surface layer proteins of bacteria to biomimetics development and applications. Therefore, this review describes certain basic aspects of moonlighting functions and their mechanism of action, surface layer proteins and their moonlighting functions of commensal bacteria and their transition towards biomimetics. The recent developments of biomimetics based on surface layer proteins have been summarized and also posited different challenges and future prospects. 展开更多
关键词 MOONLIGHTING biomimetIC Surface Layer PROTEINS SELF-ASSEMBLY Nano-Biotechnology
下载PDF
Biomimetic Erythrocyte-Like Particles from Microfluidic Electrospray for Tissue Engineering
6
作者 Zhiqiang Luo Lijun Cai +2 位作者 Hanxu Chen Guopu Chen Yuanjin Zhao 《Engineering》 SCIE EI CAS CSCD 2024年第9期78-86,共9页
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy... Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering. 展开更多
关键词 biomimetics ERYTHROCYTE Tissue engineering MICROFLUIDICS ELECTROSPRAY Oxygen delivery
下载PDF
Synergistically biomimetic platform that enables droplets to be self-propelled
7
作者 Minghao Li Yao Lu +2 位作者 Yujie Wang Shuai Huang Kai Feng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期272-283,共12页
Droplet transport still faces numerous challenges,such as a limited transport distance,large volume loss,and liquid contamination.Inspired by the principle of‘synergistic biomimetics’,we propose a design for a platf... Droplet transport still faces numerous challenges,such as a limited transport distance,large volume loss,and liquid contamination.Inspired by the principle of‘synergistic biomimetics’,we propose a design for a platform that enables droplets to be self-propelled.The orchid leaf-like three-dimensional driving structure provides driving forces for the liquid droplets,whereas the lotus leaf-like superhydrophobic surface prevents liquid adhesion,and the bamboo-like nodes enable long-distance transport.During droplet transport,no external energy input is required,no fluid adhesion or residue is induced,and no contamination or mass loss of the fluid is caused.We explore the influence of various types and parameters of wedge structures on droplet transportation,the deceleration of droplet speed at nodal points,and the distribution of internal pressure.The results indicate that the transport platform exhibits insensitivity to pH value and temperature.It allows droplets to be transported with varying curvatures in a spatial environment,making it applicable in tasks like target collection,as well as load,fused,anti-gravity,and long-distance transport.The maximum droplet transport speed reached(58±5)mm·s^(−1),whereas the transport distance extended to(136±4)mm.The developed platform holds significant application prospects in the fields of biomedicine and chemistry,such as high-throughput screening of drugs,genomic bioanalysis,microfluidic chip technology for drug delivery,and analysis of biological samples. 展开更多
关键词 synergistic biomimetics superhydrophobic surface multi-layer wedge-angle structure droplet transport
下载PDF
Biomimetic 3D printing of composite structures with decreased cracking
8
作者 Fan Du Kai Li +7 位作者 Mingzhen Li Junyang Fang Long Sun Chao Wang Yexin Wang Maiqi Liu Jinbang Li Xiaoying Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期24-34,共11页
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar... The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators. 展开更多
关键词 3D printing Electrohydrodynamic jet biomimetIC Structural integrity Composite scaffold
下载PDF
A biomimetic spore nanoplatform for boosting chemodynamic therapy and bacteria-mediated antitumor immunity for synergistic cancer treatment
9
作者 Cuixia Zheng Lingling Sun +8 位作者 Hongjuan Zhao Mengya Niu Dandan Zhang Xinxin Liu Qingling Song Weijie Zhong Baojin Wang Yun Zhang Lei Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期102-114,共13页
Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability an... Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy. 展开更多
关键词 biomimetic spore shell Bacteria-mediated antitumor THERAPY Chemodynamic therapy Immunotherapy Tumor microenvironment
下载PDF
Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy
10
作者 Bowen Guo Zekun Wang +3 位作者 Lei Zheng Guang Mo Hongjun Zhou Dan Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期156-171,共16页
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut... Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures. 展开更多
关键词 biomimetic self-assembly support electronic metal-support interactions oxygen evolution reaction single atoms catalysts
下载PDF
仿生再矿化治疗在牙釉质早期脱矿的作用及机制
11
作者 蔺孝慧 杨梦源 李春年 《中国组织工程研究》 CAS 北大核心 2025年第4期856-865,共10页
背景:随着饮食改善和生活水平提高,酸性饮食和正畸治疗等成为导致牙釉质表面脱矿的主要原因。作为牙齿龋坏的第一步,牙釉质脱矿应被积极干预,机械磨除损伤较大且不符合微创医学理念,仿生再矿化是目前应对牙釉质脱矿的最佳方式。目的:通... 背景:随着饮食改善和生活水平提高,酸性饮食和正畸治疗等成为导致牙釉质表面脱矿的主要原因。作为牙齿龋坏的第一步,牙釉质脱矿应被积极干预,机械磨除损伤较大且不符合微创医学理念,仿生再矿化是目前应对牙釉质脱矿的最佳方式。目的:通过对牙釉质早期脱矿的仿生再矿化治疗机制、应用方式及研究进展进行综述,为进一步攻克仿生再矿化热点难题提供思路。方法:以“Enamel demineralization,Biomimetic remineralization,amelogenin,Amorphous calcium phosphate”等作为英文关键词在PubMed数据库检索,以“釉质脱矿,仿生再矿化,釉原蛋白”等关键词在中国知网数据库进行检索,通过筛选最终共得到72篇文献进行综述分析。结果与结论:①目前针对釉质脱矿有药物治疗如含氟制剂等、激光治疗、树脂渗透、再矿化治疗等治疗方式,仿生再矿化是目前牙釉质早期脱矿最理想的修复方式。②狭义的釉质再矿化指早期釉质脱矿后内部的矿物质再沉积,广义的釉质再矿化包括釉质表面和内部两方面的矿化沉积。③临床仿生再矿化试剂多以釉原蛋白、非釉原蛋白、釉原蛋白肽、酪蛋白磷酸肽-不定形磷酸钙复合物等为主要成分。蛋白及肽类材料优势在于符合生理机制,可通过诱导定向生成高强度再矿化材料,劣势在于制作工艺相对复杂,成本较高;不定形磷酸钙复合物再矿化效果好,但需与其他材料结合使用以发挥作用;其他磷酸钙材料便于携带、有利美观,但易导致牙石形成。④未来研究应着重于以下几个方面:增加随机对照试验数据和临床结果,明确各个方式的适应证;发掘更多仿生再矿化方法,寻找合适替代材料;寻找合理的材料结合方式,以使其优缺点互补;加强临床应用便携性,以增加日常使用频率,使短期实验结论获得长期临床数据支持。 展开更多
关键词 牙釉质 釉质脱矿 仿生再矿化 釉原蛋白 酪蛋白磷酸肽-不定形磷酸钙复合物 氟化物 羟基磷灰石 自组装
下载PDF
Biomimetic Shoulder Complex Based on 3-PSS/S Spherical Parallel Mechanism 被引量:23
12
作者 HOU Yulei HU Xinzhe +1 位作者 ZENG Daxing ZHOU Yulin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期29-37,共9页
The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism complete... The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design. 展开更多
关键词 shoulder complex biomimetics spherical parallel mechanism
下载PDF
A Biomimetic Climbing Robot Based on the Gecko 被引量:18
13
作者 Carlo Menon Metin Sitti 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第3期115-125,共11页
The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as... The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1. 展开更多
关键词 GECKO ROBOTICS biomimetics CLIMBING space memory alloy
下载PDF
A Biomimetic Study of Discontinuous-Constraint Metamorphic Mechanism for Gecko-Like Robot 被引量:12
14
作者 Zhen-dong Dai Jiu-rong Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期91-95,共5页
Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the ... Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy. 展开更多
关键词 biomimetIC ROBOTICS gecko-like robot metamorphic mechanism
下载PDF
Effect of an Artificial Caudal Fin on the Performance of a Biomimetic Fish Robot Propelled by Piezoelectric Actuators 被引量:17
15
作者 Seok Heo Tedy Wiguna +1 位作者 Hoon Cheol Park Nam Seo Goo 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第3期151-158,共8页
This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a l... This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption. 展开更多
关键词 LIPCA biomimetic fish robot caudal fro Strouhal number Froude number Reynolds number
下载PDF
Effects of Biomimetic Surface Designs on Furrow Opener Performance 被引量:16
16
作者 Ballel.Z.Moayad 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期280-289,共10页
The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and ... The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo- lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Seven furrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil.. 展开更多
关键词 furruw opener UHMWPE biomimetic surface design tillage resistance finite element analysis
下载PDF
Wetting Behaviours of a Single Droplet on Biomimetic Micro Structured Surfaces 被引量:10
17
作者 Y.Q.Zu~1,Y.Y.Yan~1,J.Q.Li~2,Z.W.Han~2 1.Faculty of Engineering,University of Nottingham,Nottingham NG7 2RD,UK 2.Key Laboratory of Bionic Engineering (Ministry of Education,China),Jilin University,Changchun 130022,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期191-198,共8页
Natural surfaces with super hydrophobic properties often have micro or hierarchical structures.In this paper, the wettingbehaviours of a single droplet on biomimetic micro structured surfaces with different roughness ... Natural surfaces with super hydrophobic properties often have micro or hierarchical structures.In this paper, the wettingbehaviours of a single droplet on biomimetic micro structured surfaces with different roughness parameters are investigated.Atheoretical model is proposed to study wetting transitions.The results of theoretical analysis are compared with those of experimentindicating that the proposed model can effectively predict the wetting transition.Furthermore, a numerical simulationbased on the meso scale Lattice Boltzmann Method (LBM) is performed to study dynamic contact angles, contact lines, andlocal velocity fields for the case that a droplet displays on the micro structured surface.A spherical water droplet with r= 15 μmfalls down to a biomimetic square-post patterned surface under the force of gravity with an initial velocity of 0.01 m·sand aninitial vertical distance of 20 μm from droplet centre to the top of pots.In spite of a higher initial velocity, the droplet can stillstay in a Cassie state; moreover, it reaches an equilibrium state at t≈17.5 ms, when contact angle is 153.16° which is slightlylower than the prediction of Cassie-Baxter’s equation which gives θ=154.40°. 展开更多
关键词 biomimetIC wetting behaviours roughness surfaces contact angle wetting transition
下载PDF
Advantages of a Biomimetic Stiffness Profile in Pitching Flexible Fin Propulsion 被引量:5
18
作者 Paul Riggs Adrian Bowyer Julian Vincent 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期113-119,共7页
The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile ... The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile is defined as the variation in localchordwise bending stiffness (EI) of a fin, from leading to trailing edge.In this study, flexible fins with a standard NACA0012shape were tested alongside fins with a stiffness profile mimicking that of a Pumpkinseed Sunfish (Lepomis gibbosus).The finswere oscillated with a pitching sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force andstatic thrust were measured.Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significantimprovement in static thrust, compared to a fin of similar dimensions with a standard NACA0012 aerofoil profile.Thebiomimetic fin also produced thrust more consistently over each oscillation cycle.A comparison of fin materials of different stiffness showed that the improvement was due to the stiffness profile itself, andwas not simply an effect of altering the overall stiffness of the fin.Fins of the same stiffness profile were observed to follow thesame thrust-power curve, independent of the stiffness of the moulding material.Biomimetic fins were shown to produce up to26% greater thrust per watt of input power, within the experimental range. 展开更多
关键词 biomimetIC PROPULSION STIFFNESS PITCHING FLEXIBLE FIN
下载PDF
Influence of Dimensions of UHMW-PE Protuberances on Sliding Resistance and Normal Adhesion of Bangkok Clay Soil to Biomimetic Plates 被引量:13
19
作者 P.Soni V.M.Salokhe 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期63-71,共9页
A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of t... A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE) has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry ( 19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and 〈0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion. 展开更多
关键词 biomimetics UHMW-PE HDR convex domed protuberances sliding resistance normal adhesion Bangkok clay soil
下载PDF
Biologically Inspired Self-assembling Synthesis of Bone-like Nano-hydroxyapatite/PLGA-(PEG-ASP)_n Composite: A New Biomimetic Bone Tissue Engineering Scaffold Material 被引量:13
20
作者 郭晓东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期234-237,共4页
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop... A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering. 展开更多
关键词 bone tissue engineering biomimetic material BIOMINERALIZATION self-asserrdaling poly D L-lactide-co-glycolide hydroxyapatite
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部