Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal patter...Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.展开更多
Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter ...Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter models were fitted to tree height and diameter at breast height(DBH)data for Populus euphratica Oliv. within a 100 ha permanent plots at Arghan Village in the lower reaches of the Tarim River, Xinjiang Uyghur Autonomous Region of China. Data from 4781 trees were used and split randomly into two sets:75 % of the data were used to estimate model parameters(model calibration), and the remaining data(25 %) were reserved for model validation. All model performances were evaluated and compared by means of multiple model performance criteria such as asymptotic t-statistics of model parameters, standardized residuals against predicted height,root mean square error(RMSE), Akaike’s informationcriterion(AIC), mean prediction error(ME) and mean absolute error(MAE). The estimated parameter a for model(6) was not statistically significant at a level of a = 0.05. RMSE and AIC test result for all models showed that exponential models(1),(2),(3) and(4) performed significantly better than others. All ten models had very small MEs and MAEs. Nearly all models underestimated tree heights except for model(6). Comparing the MEs and MAEs of models, model(1) produced smaller MEs(0.0059) and MAEs(1.3754) than other models. To assess the predictive performance of models, we also calculated MEs by dividing the model validation data set into 10-cm DBH classes. This suggested that all models were likely to create higher mean prediction errors for tree DBH classes[20 cm. However, no clear trend was found among models.Model(6) generated significantly smaller mean prediction errors across all tree DBH classes. Considering all the aforementioned criteria, model(1): TH ? 1:3 t a= e1 t b?eàc?DBHT and model(6): TH ? 1:3 t DBH2= ea t b?DBH t c ? DBH2T are recommended as suitable models for describing the height–diameter relationship of P. euphratica. The limitations of other models showing poor performance in predicting tree height are discussed. We provide explanations for these shortcomings.展开更多
Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters f...Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters for various tree species.展开更多
Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is curr...Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is currently unknown. Shell color variation was studied in mated and non-mated specimens of this species from different microareas in one locality from NW Spain, in order to estimate sexual selection and assortative mating that may (still) be operating in this population. The analyses across microareas allowed us to investigate frequency-dependent selection and assortative mating components, mechanisms that could maintain the polymorphism. The presence of shell scars caused by crab attacks, an environmental variable not related with sexual selection or assortative mating, was used as experimental control. This study provides new evidence of significant disas- sortative mating and some degree of sexual selection against some shell colors, supporting the results found 21 years ago in a similar study, i.e. in the same species and locality. The similarity of these estimates during the studied period suggests that this experimental approach is consistent and valid to be extended to other populations and organisms. In addition, sexual selection and assortative mating estimates did not change across microareas differing in shell color frequencies, suggesting than the polymor- phism can not be maintained by a frequency-dependent (sexual selection-based) mechanism. Our main hypothesis is that negative assortative mating could contribute to the maintenance of the polymorphism, perhaps by males showing distinct female color preferences when searching for mates [Current Zoology 58 (3): 463-474, 2012].展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61071164)
文摘Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.
基金supported by the National Natural Science Foundation of China(Grant No:31360200,31270742)German Federal Ministry of Education and Research(BMBF)within the framework of the SuMaRiO project(01LL0918D)the Volkswagen Stiftung(Eco CAR project,Az.88497)
文摘Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter models were fitted to tree height and diameter at breast height(DBH)data for Populus euphratica Oliv. within a 100 ha permanent plots at Arghan Village in the lower reaches of the Tarim River, Xinjiang Uyghur Autonomous Region of China. Data from 4781 trees were used and split randomly into two sets:75 % of the data were used to estimate model parameters(model calibration), and the remaining data(25 %) were reserved for model validation. All model performances were evaluated and compared by means of multiple model performance criteria such as asymptotic t-statistics of model parameters, standardized residuals against predicted height,root mean square error(RMSE), Akaike’s informationcriterion(AIC), mean prediction error(ME) and mean absolute error(MAE). The estimated parameter a for model(6) was not statistically significant at a level of a = 0.05. RMSE and AIC test result for all models showed that exponential models(1),(2),(3) and(4) performed significantly better than others. All ten models had very small MEs and MAEs. Nearly all models underestimated tree heights except for model(6). Comparing the MEs and MAEs of models, model(1) produced smaller MEs(0.0059) and MAEs(1.3754) than other models. To assess the predictive performance of models, we also calculated MEs by dividing the model validation data set into 10-cm DBH classes. This suggested that all models were likely to create higher mean prediction errors for tree DBH classes[20 cm. However, no clear trend was found among models.Model(6) generated significantly smaller mean prediction errors across all tree DBH classes. Considering all the aforementioned criteria, model(1): TH ? 1:3 t a= e1 t b?eàc?DBHT and model(6): TH ? 1:3 t DBH2= ea t b?DBH t c ? DBH2T are recommended as suitable models for describing the height–diameter relationship of P. euphratica. The limitations of other models showing poor performance in predicting tree height are discussed. We provide explanations for these shortcomings.
文摘Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters for various tree species.
文摘Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is currently unknown. Shell color variation was studied in mated and non-mated specimens of this species from different microareas in one locality from NW Spain, in order to estimate sexual selection and assortative mating that may (still) be operating in this population. The analyses across microareas allowed us to investigate frequency-dependent selection and assortative mating components, mechanisms that could maintain the polymorphism. The presence of shell scars caused by crab attacks, an environmental variable not related with sexual selection or assortative mating, was used as experimental control. This study provides new evidence of significant disas- sortative mating and some degree of sexual selection against some shell colors, supporting the results found 21 years ago in a similar study, i.e. in the same species and locality. The similarity of these estimates during the studied period suggests that this experimental approach is consistent and valid to be extended to other populations and organisms. In addition, sexual selection and assortative mating estimates did not change across microareas differing in shell color frequencies, suggesting than the polymor- phism can not be maintained by a frequency-dependent (sexual selection-based) mechanism. Our main hypothesis is that negative assortative mating could contribute to the maintenance of the polymorphism, perhaps by males showing distinct female color preferences when searching for mates [Current Zoology 58 (3): 463-474, 2012].