Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reduc...Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication.It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data.The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means.The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data.The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables.This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach.It also demonstrates the generative function forKalman-filer based prediction model and its observations.This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration(CPE)for Python.展开更多
Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to...Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.展开更多
It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were se...It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were selected to predict the potential habitat distribution of sorghum in China. The potential distribution of sorghum under baseline climate conditions and future climate conditions (2050s and 2070s) under two climate change scenarios, RCP4.5 and RCP8.5, were simulated, and the receiver operating curve under the accuracy of the model was evaluated using the area under the receiver operating curve (AUC). The results showed that the maximum entropy model predicted the potential sorghum habitat distribution with high accuracy, with Bio2 (monthly mean diurnal temperature difference), Bio6 (minimum temperature in the coldest month), and Bio13 (rainfall in the wettest month) as the main climatic factors affecting sorghum distribution among the 22 environmental factors. Under the baseline climate conditions, potential sorghum habitats are mainly distributed in the southwest, central, and east China. Over time, the potential sorghum habitat expanded into northern and southern China, with significant additions and negligible decreases in potential sorghum habitat in the study area, and a significant increase in total area, with the RCP8.5 scenario adding much more area than the RCP4.5 scenario.展开更多
By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model wh...By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.展开更多
A new model for predicting the total tree height for harvested stems from cut-to-length(CTL)harvester data was constructed for Pinus radiata(D.Don)following a conceptual analysis of relative stem profi les,comparisons...A new model for predicting the total tree height for harvested stems from cut-to-length(CTL)harvester data was constructed for Pinus radiata(D.Don)following a conceptual analysis of relative stem profi les,comparisons of candidate models forms and extensive selections of predictor variables.Stem profi les of more than 3000 trees in a taper data set were each processed 6 times through simulated log cutting to generate the data required for this purpose.The CTL simulations not only mimicked but also covered the full range of cutting patterns of nearly 0.45×106 stems harvested during both thinning and harvesting operations.The single-equation model was estimated through the multipleequation generalized method of moments estimator to obtain effi cient and consistent parameter estimates in the presence of error correlation and heteroscedasticity that were inherent to the systematic structure of the data.The predictive performances of our new model in its linear and nonlinear form were evaluated through a leave-one-tree-out cross validation process and compared against that of the only such existing model.The evaluations and comparisons were made through benchmarking statistics both globally over the entire data space and locally within specifi c subdivisions of the data space.These statistics indicated that the nonlinear form of our model was the best and its linear form ranked second.The prediction accuracy of our nonlinear model improved when the total log length represented more than 20%of the total tree height.The poorer performance of the existing model was partly attributed to the high degree of multicollinearity among its predictor variables,which led to highly variable and unstable parameter estimates.Our new model will facilitate and widen the utilization of harvester data far beyond the current limited use for monitoring and reporting log productions in P.radiata plantations.It will also facilitate the estimation of bark thickness and help make harvester data a potential source of taper data to reduce the intensity and cost of the conventional destructive taper sampling in the fi eld.Although developed for P.radiata,the mathematical form of our new model will be applicable to other tree species for which CTL harvester data are routinely captured during thinning and harvesting operations.展开更多
To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models we...To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models were evaluated. It was shown that hypoplastic creep model has high prediction accuracy for both creep strain and strain rate in a wide stress range. The elementary rheological creep model can only be used for creep strains at low stress levels, because of the restraints of its mathematical construction. For the soft soil creep model, the progressive change from the primary to secondary and tertiary stages cannot be captured at high stress levels. Therefore, the elementary rheological and soft soil creep models can only be used for low stress levels without a tertiary stage; while the hypoplastic creep model is applicable at high stress levels with the three creep stages.展开更多
The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learn...The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator(URLs)analysis.The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions,which deals with the detection of phishing.Contrarily,the URLs in both classes from the login page due,considering the representation of a real case scenario and the demonstration for obtaining the rate of false-positive with the existing approaches during the legal login pages provides the test having URLs.In addition,some model reduces the accuracy rather than training the base model and testing the latest URLs.In addition,a feature analysis is performed on the present phishing domains to identify various approaches to using the phishers in the campaign.A new dataset called the MUPD dataset is used for evaluation.Lastly,a prediction model,the Dense forward-backwards Long Short Term Memory(LSTM)model(d−FBLSTM),is presented for combining the forward and backward propagation of LSMT to obtain the accuracy of 98.5%on the initiated login URL dataset.展开更多
In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate ...In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.展开更多
Feasibility of oil production predicting results influences the annual planning and long-term field development plan of oil field, so the selection of predicting models plays a core role. In this paper, three differen...Feasibility of oil production predicting results influences the annual planning and long-term field development plan of oil field, so the selection of predicting models plays a core role. In this paper, three different predicting models are introduced, they are neural network model, support vector machine model and GM (1, 1) model. By using these three different models to predict the oil production in XINJIANG oilfield in China, advantages and disadvantages of these models have been discussed. The predicting results show: the fitting accuracy by the neural network model or by the support vector machine model is higher than GM (1, 1) model, the prediction error is smaller than 10%, so neural network model and support vector machine model can be used to short-term forecast of oil production;predicting accuracy by GM (1, 1) model is not good, but the curve trend with GM (1, 1) model is consistent with the downward trend in oil production, so GM (1, 1) predicting model can be used to long-term prediction of oil production.展开更多
文摘Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication.It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data.The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means.The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data.The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables.This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach.It also demonstrates the generative function forKalman-filer based prediction model and its observations.This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration(CPE)for Python.
基金Funding is provided by Taif University Researchers Supporting Project Number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.
文摘It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were selected to predict the potential habitat distribution of sorghum in China. The potential distribution of sorghum under baseline climate conditions and future climate conditions (2050s and 2070s) under two climate change scenarios, RCP4.5 and RCP8.5, were simulated, and the receiver operating curve under the accuracy of the model was evaluated using the area under the receiver operating curve (AUC). The results showed that the maximum entropy model predicted the potential sorghum habitat distribution with high accuracy, with Bio2 (monthly mean diurnal temperature difference), Bio6 (minimum temperature in the coldest month), and Bio13 (rainfall in the wettest month) as the main climatic factors affecting sorghum distribution among the 22 environmental factors. Under the baseline climate conditions, potential sorghum habitats are mainly distributed in the southwest, central, and east China. Over time, the potential sorghum habitat expanded into northern and southern China, with significant additions and negligible decreases in potential sorghum habitat in the study area, and a significant increase in total area, with the RCP8.5 scenario adding much more area than the RCP4.5 scenario.
文摘By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.
基金Forest and Wood Products Australia Limited(FWPA)through project PNC465-1718:Advanced real-time measurements at harvest to increase value recovery and also supported by Beijing Forestry University through the special fund for characteristic development under the program of Building World-class University and Disciplines.
文摘A new model for predicting the total tree height for harvested stems from cut-to-length(CTL)harvester data was constructed for Pinus radiata(D.Don)following a conceptual analysis of relative stem profi les,comparisons of candidate models forms and extensive selections of predictor variables.Stem profi les of more than 3000 trees in a taper data set were each processed 6 times through simulated log cutting to generate the data required for this purpose.The CTL simulations not only mimicked but also covered the full range of cutting patterns of nearly 0.45×106 stems harvested during both thinning and harvesting operations.The single-equation model was estimated through the multipleequation generalized method of moments estimator to obtain effi cient and consistent parameter estimates in the presence of error correlation and heteroscedasticity that were inherent to the systematic structure of the data.The predictive performances of our new model in its linear and nonlinear form were evaluated through a leave-one-tree-out cross validation process and compared against that of the only such existing model.The evaluations and comparisons were made through benchmarking statistics both globally over the entire data space and locally within specifi c subdivisions of the data space.These statistics indicated that the nonlinear form of our model was the best and its linear form ranked second.The prediction accuracy of our nonlinear model improved when the total log length represented more than 20%of the total tree height.The poorer performance of the existing model was partly attributed to the high degree of multicollinearity among its predictor variables,which led to highly variable and unstable parameter estimates.Our new model will facilitate and widen the utilization of harvester data far beyond the current limited use for monitoring and reporting log productions in P.radiata plantations.It will also facilitate the estimation of bark thickness and help make harvester data a potential source of taper data to reduce the intensity and cost of the conventional destructive taper sampling in the fi eld.Although developed for P.radiata,the mathematical form of our new model will be applicable to other tree species for which CTL harvester data are routinely captured during thinning and harvesting operations.
基金supported in part by the National Natural Science Foundation of China (No. 41201064 and No. 41172253)the National Key Basic Research (973) Program of China (Grant No. 2012CB026106)
文摘To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models were evaluated. It was shown that hypoplastic creep model has high prediction accuracy for both creep strain and strain rate in a wide stress range. The elementary rheological creep model can only be used for creep strains at low stress levels, because of the restraints of its mathematical construction. For the soft soil creep model, the progressive change from the primary to secondary and tertiary stages cannot be captured at high stress levels. Therefore, the elementary rheological and soft soil creep models can only be used for low stress levels without a tertiary stage; while the hypoplastic creep model is applicable at high stress levels with the three creep stages.
文摘The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing.The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator(URLs)analysis.The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions,which deals with the detection of phishing.Contrarily,the URLs in both classes from the login page due,considering the representation of a real case scenario and the demonstration for obtaining the rate of false-positive with the existing approaches during the legal login pages provides the test having URLs.In addition,some model reduces the accuracy rather than training the base model and testing the latest URLs.In addition,a feature analysis is performed on the present phishing domains to identify various approaches to using the phishers in the campaign.A new dataset called the MUPD dataset is used for evaluation.Lastly,a prediction model,the Dense forward-backwards Long Short Term Memory(LSTM)model(d−FBLSTM),is presented for combining the forward and backward propagation of LSMT to obtain the accuracy of 98.5%on the initiated login URL dataset.
文摘In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.
文摘Feasibility of oil production predicting results influences the annual planning and long-term field development plan of oil field, so the selection of predicting models plays a core role. In this paper, three different predicting models are introduced, they are neural network model, support vector machine model and GM (1, 1) model. By using these three different models to predict the oil production in XINJIANG oilfield in China, advantages and disadvantages of these models have been discussed. The predicting results show: the fitting accuracy by the neural network model or by the support vector machine model is higher than GM (1, 1) model, the prediction error is smaller than 10%, so neural network model and support vector machine model can be used to short-term forecast of oil production;predicting accuracy by GM (1, 1) model is not good, but the curve trend with GM (1, 1) model is consistent with the downward trend in oil production, so GM (1, 1) predicting model can be used to long-term prediction of oil production.