期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool 被引量:6
1
作者 Qianjian GUO Shuo FAN +3 位作者 Rufeng XU Xiang CHENG Guoyong ZHAO Jianguo YANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期746-753,共8页
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea... Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools. 展开更多
关键词 five-axis machine tool Artificial bee colony Thermal error modeling Artificial neural network
下载PDF
Identification of Kinematic Errors of Five-axis Machine Tool Trunnion Axis from Finished Test Piece 被引量:3
2
作者 ZHANG Ya FU Jianzhong CHEN Zichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期999-1007,共9页
Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c... Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool. 展开更多
关键词 five-axis machine tool kinematic errors trunnion axis test piece error-sensitive directions
下载PDF
A Generic Kinematic Model for Three Main Types of Five-axis Machine Tools 被引量:1
3
作者 YU Yang WEI Sheng-min +1 位作者 LIU Ping AO Zhi-qiang 《International Journal of Plant Engineering and Management》 2009年第4期243-249,共7页
Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was d... Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools. 展开更多
关键词 CNC machining of sculptured surfaces five-axis machine tool configuration kinematic model transformation matrix
下载PDF
High accuracy NURBS interpolation for five-axis machine of table-rotating/spindle-tilting type
4
作者 吴广宽 席光 +1 位作者 樊宏周 郑健生 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第2期149-153,158,共6页
In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a defi... In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results. 展开更多
关键词 five-axis machine NURBS chord error linear interpolation error ALGORITHM
下载PDF
PLANNING METHOD OF TOOL ORIENTATION IN FIVE-AXIS NC MACHINING
5
作者 姬俊锋 周来水 +1 位作者 安鲁陵 张森棠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期83-88,共6页
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int... The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality. 展开更多
关键词 computer aided mamufacturing NC machining TOOLS five-axis
下载PDF
Continuity control method of cutter posture vector for efficient five-axis machining
6
作者 HWANG Jong-dae KIM Sang-myung +1 位作者 JUNG Hyun-chul JUNG Yoon-gyo 《Journal of Central South University》 SCIE EI CAS 2011年第6期1969-1975,共7页
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr... During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time. 展开更多
关键词 five-axis control machining CONFIGURATION-SPACE B-SPLINE continuity control method IMPELLER interference
下载PDF
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
7
作者 Minglong Guo Zhaocheng Wei +2 位作者 Minjie Wang Zhiwei Zhao Shengxian Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期172-184,共13页
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an... The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces. 展开更多
关键词 Curved surface five-axis machining Dimension reduction and mapping Milling force DYNAMICS
下载PDF
Tool wear condition monitoring method of five-axis machining center based on PSO-CNN
8
作者 Shuo WANG Zhenliang YU +1 位作者 Changguo LU Jingbo WANG 《Mechanical Engineering Science》 2022年第2期11-20,I0006,共11页
The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network m... The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network model based on the optimization of PSO algorithm to monitor the tool wear status.Firstly,the cutting vibration signals and spindle current signals during the milling process of the five-axis machining center are collected using sensor technology,and the features related to the tool wear status are extracted in the time domain,frequency domain and time-frequency domain to form a feature sample matrix;secondly,the tool wear values corresponding to the above features are measured using an electron microscope and classified into three types:slight wear,normal wear and sharp wear to construct a target Finally,the tool wear sample data set is constructed by using multi-source information fusion technology and input to PSO-CNN model to complete the prediction of tool wear status.The results show that the proposed method can effectively predict the tool wear state with an accuracy of 98.27%;and compared with BP model,CNN model and SVM model,the accuracy indexes are improved by 9.48%,3.44%and 1.72%respectively,which indicates that the PSO-CNN model proposed in this paper has obvious advantages in the field of tool wear state identification. 展开更多
关键词 five-axis machining center tool wear PSO-CNN intelligent monitoring
下载PDF
Fault monitoring and diagnosis of motorized spindle in five-axis Machining Center based on CNN-SVM-PSO
9
作者 Shuo WANG Zhenliang YU +1 位作者 Xu LIU Zhipeng LYU 《Mechanical Engineering Science》 2022年第2期21-29,I0005,共10页
A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm(PSO)is proposed to address the problems of high failure rate of electric spindles of high precision CNC machine tools,while manua... A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm(PSO)is proposed to address the problems of high failure rate of electric spindles of high precision CNC machine tools,while manual fault diagnosis is a tedious task and low efficiency.The model uses a convolutional neural network(CNN)model as a deep feature miner and a support vector machine(SVM)as a fault state classifier.Taking the electric spindle of a five-axis machining centre as the experimental research object,the model classifies and predicts four labelled states:normal state of the electric spindle,loose state of the rotating shaft and coupling,eccentric state of the motor air gap and damaged state of the bearing and rolling body,while introducing a particle swarm algorithm(PSO)is introduced to optimize the hyperparameters in the model to improve the prediction effect.The results show that the proposed hybrid PSO-CNN-SVM model is able to monitor and diagnose the electric spindle failure of a 5-axis machining centre with an accuracy of 99.33%.In comparison with the BP model,SVM model,CNN model and CNN-SVM model,the accuracy of the model increased by 10%,6%,4%and 2%respectively,which shows that the fault diagnosis model proposed in the paper can monitor the operation status of the electric spindle more effectively and diagnose the type of electric spindle fault,so as to improve the maintenance strategy. 展开更多
关键词 five-axis machining centres CNN-SVM spindle vibration fault diagnosis
下载PDF
An Open CAM System for Dentistry on the Basis of China-made 5-axis Simultaneous Contouring CNC Machine Tool and Industrial CAM Software 被引量:2
10
作者 鲁莉 刘树生 +1 位作者 施生根 杨建中 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第5期696-700,共5页
China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, wi... China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for den-tistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system. 展开更多
关键词 computer-aided dental design and manufacture five-axis simultaneous contouring CNC machine tool CAM software open dental CAM system
下载PDF
Optimization Design for Fixed Table of Gantry Machining Center Based on Sensitivity and Topology Analyses 被引量:3
11
作者 郑彬 殷国富 +2 位作者 黄辉 陈强 方辉 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期263-268,共6页
In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of th... In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure. 展开更多
关键词 gantry machining center sensitivity analysis topology optimization optimization design fixed tableCLC number:TG502Document code:AArticle ID:1672-5220(2013)04-0263-06
下载PDF
Finite Element Analysis and Optimal Design Based on ANSYS in a XH2408 Gantry Style NC Machining Center 被引量:3
12
作者 WEI Feng-tao ZHAO Jian-feng SONG Li 《International Journal of Plant Engineering and Management》 2010年第3期188-192,共5页
ANSYS, the software of construction analysis, is used to analyze static and dynamic performances of a XH2408 gantry style numerical control (NC) milling machining center and optimize its construction using the finit... ANSYS, the software of construction analysis, is used to analyze static and dynamic performances of a XH2408 gantry style numerical control (NC) milling machining center and optimize its construction using the finite element method. First, a finite element model is established and the static and dynamic analysis are completed as constraints and loads applied on the finite element model. It is found that both spindle box and gantry are the worst components of assembly in performance. Secondly, the spindle box and gantry are chosen as objects of optimal design separately, aiming to improve their performance. The optimal plans are accomplished on the basis of the minimum volume for the spindle box and the maximum inherent frequency for the gantry subject to the constrains. Finally, the machine tool improved is analyzed statically and dynamically based on the optimal results of the spindle box and gantry. The results show that optimal design with the finite element method increases static and dynamical performances of the XH2408 gantry style numerical control milling machining center and the technique is effective and practical in engineering applications. 展开更多
关键词 gantry style machining center finite element method ANSYS optimal design
下载PDF
Structure Improvement and Optimization of Gantry Milling System for Complex Boring and Milling Machining Center
13
作者 Zhongxin Zang Qilin Shu 《Journal of Electronic Research and Application》 2023年第5期1-7,共7页
To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influen... To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influence of factors such as structural quality,natural frequency,and stiffness.The approach employed for this investigation involved mechanism topology optimization.To initiate this process,a finite element model of the gantry milling system structure was established.Subsequently,an objective function,comprising strain energy and modal eigenvalues,was synthesized.This objective function was optimized through multi-objective topology optimization,taking into account certain mass fraction constraints and considering various factors,including processing technology.The ultimate goal of this optimization was to create a gantry milling structure that exhibited high levels of dynamic and static stiffness,a superior natural frequency,and reduced mass.To validate the effectiveness of these topology optimization results,a comparison was made between the new and previous structures.The findings of this study serve as a valuable reference for optimizing the structure of other components within the machining center. 展开更多
关键词 machining center gantry milling system structure Natural frequency STIFFNESS Multi-objective topology optimization
下载PDF
基于Gantry驱动的双直线电动机高速动态同步误差性能测试研究 被引量:7
14
作者 袁博 林献坤 《制造技术与机床》 CSCD 北大核心 2010年第2期17-21,共5页
分析高速龙门机床中应用双直线电动机驱动同步进给轴的优越性。给出了基于SIMUERIK 840D的Gantry龙门同步功能控制双直线电动机高速同步驱动的实现方法。探讨通过应用双频激光干涉仪测量动态同步误差方法,并在自构建的龙门驱动实验台上... 分析高速龙门机床中应用双直线电动机驱动同步进给轴的优越性。给出了基于SIMUERIK 840D的Gantry龙门同步功能控制双直线电动机高速同步驱动的实现方法。探讨通过应用双频激光干涉仪测量动态同步误差方法,并在自构建的龙门驱动实验台上,对主从轴的动态同步误差进行测试实验。测试结果表明:在Gantry控制驱动下,主从轴的动态同步误差随进给速度增大而增大;不同的龙门负载会在直线电动机加速和减速阶段对同步性能产生影响。 展开更多
关键词 龙门移动式机床 直线电动机 龙门同步轴 同步误差
下载PDF
Tool Positioning Algorithm Based on Smooth Tool Paths for 5-axis Machining of Sculptured Surfaces 被引量:7
15
作者 XU Rufeng CHEN Zhitong CHEN Wuyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期851-858,共8页
The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoo... The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoothness and continuity of a whole tool path.When the surface curvature varies significantly,a local abrupt change of tool paths will happen.The abrupt change has a great influence on surface machining quality.In order to keep generated tool paths smooth and continuous,a five-axis tool positioning algorithm based on smooth tool paths is presented.Firstly,the inclination angle,the tilt angle and offset distance of the tool at a CC point are used as design variables,and the machining strip width is used as an objective function,an optimization model of a local tool positioning algorithm is thus established.Then,a vector equation of tool path is derived by using the above optimization model.By analyzing the equation,the main factors affecting the tool path quality are obtained.Finally,a new tool position optimization model is established,and the detailed process of tool position optimization is also given.An experiment is conducted to machine an aircraft turbine blade by using the proposed algorithm on a 5-axis blade grinding machine,and the machined blade surface is measured with a coordinate measuring machine(CMM).Experimental and measured results show that the proposed algorithm can ensure tool paths are smooth and continuous,improve the tool path quality,avoid the local abrupt change of tool paths,and enhance machining quality and machining efficiency of sculptured surfaces. 展开更多
关键词 tool position tool path SMOOTH five-axis sculptured surfaces machinING
下载PDF
Design and development of a five-axis machine tool with high accuracy,stiffness and efficiency for aero-engine casing manufacturing 被引量:4
16
作者 Yutian WANG Dong WANG +3 位作者 Shizhen ZHANG Zihan TANG Liping WANG Yanmin LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期485-496,共12页
In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with hi... In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with high accuracy, stiffness and efficiency, including whole structure design,key components design, and supporting stiffness design. First, an appropriate structure of five-axis machine tool is determined considering the processing characteristics of aero-engine casing. Then, a dual drive swing head and a compact motorized spindle are designed with enough drive capability and stiffness, and related structure, assembly method, cooling technology, and performance simulation are given in detail. Next, a design method of supporting stiffness of guide is proposed through the deformation prediction of the spindle end. Based on above work, a prototype of machine tool is developed, and some experiments are carried out, including performance tests of swing head and motorized spindle, and machining of a simulated workpiece of aero-engine casing. All experimental results show that the machine tool has satisfactory accuracy, stiffness and efficiency, which meets the machining requirements of aero-engine casing. The main work can be used as references for engineers and technicians, which are meaningful in practice. 展开更多
关键词 Aero-engine casing manufacturing Compact motorized spindle Dual drive swing head five-axis machine tool Supporting stiffness
原文传递
Improved closed-loop tracking interferometer measurement for a five-axis machine tool with a bi-rotary milling head 被引量:1
17
作者 TANG XinYu XU Kun +3 位作者 BI QingZhen SONG ZhiYong JI YuLei QIAN DeHou 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第5期1127-1136,共10页
Tracking interferometer based on bi-rotary milling head is a novel scheme to conduct volumetric accuracy measurement of a five-axis machine tool.The laser beam direction of the interferometer can be regulated to follo... Tracking interferometer based on bi-rotary milling head is a novel scheme to conduct volumetric accuracy measurement of a five-axis machine tool.The laser beam direction of the interferometer can be regulated to follow the retroreflector by moving the bi-rotary head.This is a low-cost implementation of multilateration measurement,and its measurement accuracy is mainly affected by the error motion of the rotary axes.This paper proposes an improved multilateration principle to identify the positionindependent geometric errors of rotary axis and laser beam,and minimize their impact on the measurement uncertainty.A closed-loop tracking interferometer system installed on the spindle is developed to perform the measurement with high tracking accuracy.The device can be installed on an ordinary five-axis machine tool without modifying the machine tool structure.The proposed scheme is conducive to improving the accuracy and practical application of the tracking interferometer based on birotary milling head.Experiments with the corresponding closed-loop tracking interferometer and uncertainty analysis are conducted to verify the performance of the proposed measurement scheme. 展开更多
关键词 tracking interferometer multilateration volumetric accuracy five-axis machine tools
原文传递
Determination of the feasible setup parameters of a workpiece to maximize the utilization of a five-axis milling machine 被引量:1
18
作者 Aqeel AHMED Muhammad WASIF +2 位作者 Anis FATIMA Liming WANG Syed Amir IQBAL 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第2期298-314,共17页
The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via mach... The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters. 展开更多
关键词 workpiece setup parameter five-axis space utilization setup parameters machine tool
原文传递
Development of Virtual Simulation System for Remote Collaborative Surface Machining
19
作者 R.S.Lee 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期68-73,共6页
Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining... Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator,which can derive synchronized motion commands according to feedrate. Thus,the system can estimate the machining time. For universal assembly of five-axis virtual machine tool,it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team. 展开更多
关键词 VIRTUAL machine tool REMOTE COLLABORATION five-axis.
下载PDF
SIEMENS840D GANTRY功能在瑞士SIP5000立式加工中心的应用 被引量:1
20
作者 王宝柱 《自动化技术与应用》 2016年第5期73-74,79,共3页
详细介绍SIEMENS840D
关键词 SIEMENS840D gantry功能 龙门式动横梁SIP5000加工中心机床上的应用 gantry功能故障的处理
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部