Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of su...Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of support vector machines in grinding process monitoring. The paper starts with an overview of grinding behaviour. Grinding force is analysed through a Short Time Fourier Transform (STFT) to identify features for condition monitoring. The Support Vector Machine (SVM) methodology is introduced as a powerful tool for the classification of different wheel wear situations. After training with available signal data, the SVM is able to identify the state of a grinding process. The requirement and strategy for using SVM for grinding process monitoring is discussed, while the result of the example illustrates how effective SVMs can be in determining wheel redress-life.展开更多
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea...Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.展开更多
The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. M...The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. Moreover, the response of the end of rotor is analyzed, andthe natural frequency, principle mode and other dynamic characteristics of the coupling system arestudied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed. The simulation andexperimental results show that the amplitude of spindle can be declined effectively when the dynamicabsorber is attached.展开更多
Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c...Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.展开更多
Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to ...Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.展开更多
A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was le...A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was less than 5.6 μm and its repetitive positioning accuracy was less than 1.8 μm; the vibration amplitude of ultrasonic grinding system was uniform and stable, and the EDM system worked well and stably.A smooth surface of K9 optical glass component was achieved by the grinding method.展开更多
Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to deve...Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.展开更多
Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was d...Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools.展开更多
In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a defi...In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.展开更多
Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of ...Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...展开更多
This is a newly developed product,CNC gear grinding machine basedon original Y 7125 A large planargear grinding machine, produced by theQinchuan Machine Tool Works. It is chieflyused for grinding the involute tooth pr...This is a newly developed product,CNC gear grinding machine basedon original Y 7125 A large planargear grinding machine, produced by theQinchuan Machine Tool Works. It is chieflyused for grinding the involute tooth profilesof gear-shaping cutters, gear-shaving cuttersand master gears, and is also used for grindinghigh precision spur and helical gears. It issuitable for the departments of the automobiles,tractors, aircraft, machine tools and toolmanufacturing industries.展开更多
The new machine features high precision,excellent rigidity and practical structure.It is made by the Beijing No.2 MachineTool Works with 40 years of experience inproducing high-precision cylindrical grindingmachines.I...The new machine features high precision,excellent rigidity and practical structure.It is made by the Beijing No.2 MachineTool Works with 40 years of experience inproducing high-precision cylindrical grindingmachines.It is already close to the standardof high precision machine tools in terms ofmachining accuracy,therefore its variousfeatures are distinctly better than previousmodels.Since being put on the market,it hasbeen well received by users. The machine is used in machineprocessing shops,tool shops and repair shopsto grind internal and external cylindricalsurfaces of cylinders and tapers.展开更多
The YM7132A gear grindingmachine with a conical grindingwheel is used for grindingcylindrical spur and helical involutegears,especially for hardenedprecision gears of small andmedium sizes.
The machine is used for precisiongrinding of hardened cylindricalgears with medium module inbatches for the industries ofaircraft,automobile,machine tool,gear box and various transmissiondevices.
The YK7250 gear grinding machine with worm grinding wheel is manufactured by the Qinchuan Machine Tool Group Co., Ltd. in Baoji City, Shaanxi Province.
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int...The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.展开更多
An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center ...An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.展开更多
The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric pr...The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric principle. With the use of differential geometry theory, the curve is proved to be with geometric feature of convex curve. It is referred to as Isometric Polygonal Curve (IPC), because that is a kind of convex curve on which the distance between any parallel tangent lines is equal. Isometric Polygonal Profile (IPP) or Isometric Polygonal Cone Profile (IPCP) or Isometric Polygonal Topless Cone (IPTC) is formed with the IPC and straight line as generating curve. But the machining and measuring of the IPCP are so inconvenient that it has little value. Keeping in mind the characteristic of the IPP and IPTC, this paper puts forward the program method of CNC grinding machining. Isometric polygonal profile connection is a kind of polygonal profile connection. It has the superiority over keys (prismatic key & spline etc), and can be suit for the situations such as high rotative velocity, large torque, high precision, and small fixed room and vibration. Nowadays, some countries such as America, Russia, German and Switzerland applied CNC machining to the machining of polygon surface coupling parts, which makes their applications in machine productions such as motor engine, heavy machine increase day by day. But reports about concrete machining technology of isometric polygonal profile and programming of CNC machining program are very few. CNC grinding of the IPP and IPTC is one kind of the precision machining technology. It is of great importance to the popularization of the IPP and IPTC connection. From the forming mechanism, we can see that the machining and measuring of the IPP and IPTC are convenient, and therefore they have the value of the popularization. But the machining and measuring of the IPCP are so inconvenient that it has little value. In the programming the CNC grinding of the IPP and IPTC, it is more reasonable to calculate the coordinate of node according to the approaching method of equal error arc. According to the method of CNC grinding mentioned above to design the grinding machine, the structure is simple and of economical and practical.展开更多
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr...During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.展开更多
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an...The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.展开更多
文摘Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of support vector machines in grinding process monitoring. The paper starts with an overview of grinding behaviour. Grinding force is analysed through a Short Time Fourier Transform (STFT) to identify features for condition monitoring. The Support Vector Machine (SVM) methodology is introduced as a powerful tool for the classification of different wheel wear situations. After training with available signal data, the SVM is able to identify the state of a grinding process. The requirement and strategy for using SVM for grinding process monitoring is discussed, while the result of the example illustrates how effective SVMs can be in determining wheel redress-life.
基金Supported by National Natural Science Foundation of China(Grant No.51305244)Shandong Provincal Natural Science Foundation of China(Grant No.ZR2013EEL015)
文摘Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
基金This project is supported by Provincial Natural Science Foundation of hianjin, China (NO.99380261l)
文摘The bearing is described by constrain matrix, and the spindle system of a NCsurface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is usedto establish the dynamic model of beam. Moreover, the response of the end of rotor is analyzed, andthe natural frequency, principle mode and other dynamic characteristics of the coupling system arestudied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed. The simulation andexperimental results show that the amplitude of spindle can be declined effectively when the dynamicabsorber is attached.
基金Supported by National Nature Science Foundation of China(Grant No.51175461)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Program for Zhejiang Leading Team of S&T Innovation of China(Grant No.2009R50008)
文摘Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of Ministry of Knowledge Economy (MKE),Korea
文摘Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.
基金Supported by the National High Technology Research and Development Program of China("863" Program,No.2009AA044204)
文摘A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was less than 5.6 μm and its repetitive positioning accuracy was less than 1.8 μm; the vibration amplitude of ultrasonic grinding system was uniform and stable, and the EDM system worked well and stably.A smooth surface of K9 optical glass component was achieved by the grinding method.
文摘Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.
文摘Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools.
文摘In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.
文摘Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...
文摘This is a newly developed product,CNC gear grinding machine basedon original Y 7125 A large planargear grinding machine, produced by theQinchuan Machine Tool Works. It is chieflyused for grinding the involute tooth profilesof gear-shaping cutters, gear-shaving cuttersand master gears, and is also used for grindinghigh precision spur and helical gears. It issuitable for the departments of the automobiles,tractors, aircraft, machine tools and toolmanufacturing industries.
文摘The new machine features high precision,excellent rigidity and practical structure.It is made by the Beijing No.2 MachineTool Works with 40 years of experience inproducing high-precision cylindrical grindingmachines.It is already close to the standardof high precision machine tools in terms ofmachining accuracy,therefore its variousfeatures are distinctly better than previousmodels.Since being put on the market,it hasbeen well received by users. The machine is used in machineprocessing shops,tool shops and repair shopsto grind internal and external cylindricalsurfaces of cylinders and tapers.
文摘The YM7132A gear grindingmachine with a conical grindingwheel is used for grindingcylindrical spur and helical involutegears,especially for hardenedprecision gears of small andmedium sizes.
文摘The machine is used for precisiongrinding of hardened cylindricalgears with medium module inbatches for the industries ofaircraft,automobile,machine tool,gear box and various transmissiondevices.
文摘The YK7250 gear grinding machine with worm grinding wheel is manufactured by the Qinchuan Machine Tool Group Co., Ltd. in Baoji City, Shaanxi Province.
文摘The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.
基金Funded by the National Defense Basic Scientific ResearchAerospace Science and Technology Corporation Commonality Technology Research Project
文摘An attempt was made to investigate the machinability of Si Cp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool. The effects of combined machining parameters, e g, cutting speed(vs), feed rate(vf), and depth of cut(ap), with the same change of material removal rate(MRR) on the mill-grinding force and surface roughness(Ra) were investigated. The formation mechanism of typical machined surface defects was analyzed by SEM. The experimental results reveal that with the same change of material removal rate, lower mill-grinding force values can be gained by increasing depth of cut and feed rate simultaneously at higher cutting speed. With the same change of MRR value, lower surface roughness values can be gained by increasing the feed rate at higher cutting speed, rather than just increasing the depth of cut, or increasing the feed rate and depth of cut simultaneously. The machined surface of Si Cp/Al composites reveals typical defects which can influence surface integrity.
文摘The formed principle and CNC grinding machining method of isometric polygonal profile are studied deeply and systematically. Equation about section curve of isometric polygon profile is set up by means of geometric principle. With the use of differential geometry theory, the curve is proved to be with geometric feature of convex curve. It is referred to as Isometric Polygonal Curve (IPC), because that is a kind of convex curve on which the distance between any parallel tangent lines is equal. Isometric Polygonal Profile (IPP) or Isometric Polygonal Cone Profile (IPCP) or Isometric Polygonal Topless Cone (IPTC) is formed with the IPC and straight line as generating curve. But the machining and measuring of the IPCP are so inconvenient that it has little value. Keeping in mind the characteristic of the IPP and IPTC, this paper puts forward the program method of CNC grinding machining. Isometric polygonal profile connection is a kind of polygonal profile connection. It has the superiority over keys (prismatic key & spline etc), and can be suit for the situations such as high rotative velocity, large torque, high precision, and small fixed room and vibration. Nowadays, some countries such as America, Russia, German and Switzerland applied CNC machining to the machining of polygon surface coupling parts, which makes their applications in machine productions such as motor engine, heavy machine increase day by day. But reports about concrete machining technology of isometric polygonal profile and programming of CNC machining program are very few. CNC grinding of the IPP and IPTC is one kind of the precision machining technology. It is of great importance to the popularization of the IPP and IPTC connection. From the forming mechanism, we can see that the machining and measuring of the IPP and IPTC are convenient, and therefore they have the value of the popularization. But the machining and measuring of the IPCP are so inconvenient that it has little value. In the programming the CNC grinding of the IPP and IPTC, it is more reasonable to calculate the coordinate of node according to the approaching method of equal error arc. According to the method of CNC grinding mentioned above to design the grinding machine, the structure is simple and of economical and practical.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005078,U1908231,52075076).
文摘The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.