Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea...Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.展开更多
Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c...Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.展开更多
Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was d...Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools.展开更多
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int...The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.展开更多
The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network m...The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network model based on the optimization of PSO algorithm to monitor the tool wear status.Firstly,the cutting vibration signals and spindle current signals during the milling process of the five-axis machining center are collected using sensor technology,and the features related to the tool wear status are extracted in the time domain,frequency domain and time-frequency domain to form a feature sample matrix;secondly,the tool wear values corresponding to the above features are measured using an electron microscope and classified into three types:slight wear,normal wear and sharp wear to construct a target Finally,the tool wear sample data set is constructed by using multi-source information fusion technology and input to PSO-CNN model to complete the prediction of tool wear status.The results show that the proposed method can effectively predict the tool wear state with an accuracy of 98.27%;and compared with BP model,CNN model and SVM model,the accuracy indexes are improved by 9.48%,3.44%and 1.72%respectively,which indicates that the PSO-CNN model proposed in this paper has obvious advantages in the field of tool wear state identification.展开更多
China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, wi...China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for den-tistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.展开更多
The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoo...The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoothness and continuity of a whole tool path.When the surface curvature varies significantly,a local abrupt change of tool paths will happen.The abrupt change has a great influence on surface machining quality.In order to keep generated tool paths smooth and continuous,a five-axis tool positioning algorithm based on smooth tool paths is presented.Firstly,the inclination angle,the tilt angle and offset distance of the tool at a CC point are used as design variables,and the machining strip width is used as an objective function,an optimization model of a local tool positioning algorithm is thus established.Then,a vector equation of tool path is derived by using the above optimization model.By analyzing the equation,the main factors affecting the tool path quality are obtained.Finally,a new tool position optimization model is established,and the detailed process of tool position optimization is also given.An experiment is conducted to machine an aircraft turbine blade by using the proposed algorithm on a 5-axis blade grinding machine,and the machined blade surface is measured with a coordinate measuring machine(CMM).Experimental and measured results show that the proposed algorithm can ensure tool paths are smooth and continuous,improve the tool path quality,avoid the local abrupt change of tool paths,and enhance machining quality and machining efficiency of sculptured surfaces.展开更多
In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with hi...In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with high accuracy, stiffness and efficiency, including whole structure design,key components design, and supporting stiffness design. First, an appropriate structure of five-axis machine tool is determined considering the processing characteristics of aero-engine casing. Then, a dual drive swing head and a compact motorized spindle are designed with enough drive capability and stiffness, and related structure, assembly method, cooling technology, and performance simulation are given in detail. Next, a design method of supporting stiffness of guide is proposed through the deformation prediction of the spindle end. Based on above work, a prototype of machine tool is developed, and some experiments are carried out, including performance tests of swing head and motorized spindle, and machining of a simulated workpiece of aero-engine casing. All experimental results show that the machine tool has satisfactory accuracy, stiffness and efficiency, which meets the machining requirements of aero-engine casing. The main work can be used as references for engineers and technicians, which are meaningful in practice.展开更多
Tracking interferometer based on bi-rotary milling head is a novel scheme to conduct volumetric accuracy measurement of a five-axis machine tool.The laser beam direction of the interferometer can be regulated to follo...Tracking interferometer based on bi-rotary milling head is a novel scheme to conduct volumetric accuracy measurement of a five-axis machine tool.The laser beam direction of the interferometer can be regulated to follow the retroreflector by moving the bi-rotary head.This is a low-cost implementation of multilateration measurement,and its measurement accuracy is mainly affected by the error motion of the rotary axes.This paper proposes an improved multilateration principle to identify the positionindependent geometric errors of rotary axis and laser beam,and minimize their impact on the measurement uncertainty.A closed-loop tracking interferometer system installed on the spindle is developed to perform the measurement with high tracking accuracy.The device can be installed on an ordinary five-axis machine tool without modifying the machine tool structure.The proposed scheme is conducive to improving the accuracy and practical application of the tracking interferometer based on birotary milling head.Experiments with the corresponding closed-loop tracking interferometer and uncertainty analysis are conducted to verify the performance of the proposed measurement scheme.展开更多
The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,g...The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,geometric error prediction and tool path optimization for five-axis flank machining. In this paper,an envelope surface model considering cutter runout effect is first established,and geometric errors induced by runout effect are derived based on the relative motion analysis between the cutter and part in machining. In the model,the cutter runout is defined by four parameters,including inclination angle,location angle,offset value and the length of cutter axis. Then the runout parameters are integrated into the rotation surface of each cutting edge that is used to form the final cutter envelope surface for the five-axis machining process. Thus,the final resulting geometric errors of the machined surface induced by cutter runout can be obtained through computing the deviations from the nominal cutter swept surface. To reduce these errors,an iterative least square method is used to optimize the tool paths for five-axis flank machining. Finally,a validation example is given for a specific ruled surface. Results show the effectiveness and feasibility of the analytical model of geometric errors induced by cutter runout,and also show that the geometric errors can be reduced significantly using the proposed tool path planning method.展开更多
A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyz...A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyzed.A segmentation method based on values of rotation angles and lengths of adjacent points is then used to subdivide these command points into accuracy regions and smoothness regions.Since tool center points generated by CAD/CAM system are usually lying in the space that is apart from the desired curve within a tolerance distance,and the corresponding tool orientation vector may change a lot while the trajectory length of the tool center point is quite small,directly machining with such points will lead to problems of coarse working shape and long machining time.A correction method for command points is implemented so that good processing effectiveness can be achieved.Also,the quintic spline is used for compressing discrete command points into a C2 continuous smooth curve.The machining experiment is finally conducted to demonstrate the effectiveness of the proposed algorithm.展开更多
For the geometry characteristics of open free-form surfaces,it is hard to consider global interference during the planning of feasible domains.Therefore,the optimal kinematic orientation of tool axis will no longer be...For the geometry characteristics of open free-form surfaces,it is hard to consider global interference during the planning of feasible domains.Therefore,the optimal kinematic orientation of tool axis will no longer be confined to the boundary of feasible domains.In this paper,according to the principle demanding that the tool should be fitted to a surface as close as possible and relevant processing parameters,a feasible domain of tool orientation for each cutter contact is planned in the local feed coordinates system.Then,these feasible domains of the tool orientation are transformed into the same coordinates system of the machine tool by the inverse kinematics transformation.The linear equations based feasible domain method and Rosen gradient projection algorithm are used to improve the optimization process in precision and efficiency of the algorithm.It constructs the variation of tool orientation optimization model and ensures the smoothness of tool orientation globally.Simulation and analysis of examples show that the proposed method has good kinematics performance and greatly improves the efficiency.展开更多
Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an ess...Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an essential task to find the collision-free tool orientation when the tool holder is pushed deep into the channel of blisk to increase rigidity and reduce vibration.Since the radius of the holder varies with the height,the line-visibility is no longer applicable when constructing collision-free regions of tool orientation.In this paper,a method of constructing collisionfree regions without interference checking is proposed.The work of finding collision-free regions resorts to solving the local contact curves on the checking surfaces of blisk.And it further transforms into searching the locally tangent points(named critical points)between the holder and surface.Then a tracking-based algorithm is proposed to search the sample critical points on these local contact curves.And the corresponding critical vectors are also calculated synchronously.Besides,the safety allowance,discrete precision and acceptable deviation are introduced in the algorithm to ensure accuracy by controlling the angle between two adjacent critical vectors properly.After that,the searched critical vectors are mapped orderly to two-dimensional space and the collisionfree regions are constructed.This method is finally verified and compared with a referenced method.The results show that the proposed method can efficiently construct collision-free regions for holder under the given accuracy.展开更多
Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented ...Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented with geometric and kinematical constraints.For a given dual parametric curve,the feedrates of sampling points are first scheduled sequent with confined feedrate of cutter tip and machine pivot,chord error,normal acceleration and angular feedrate.Then,the feedrate profiles of angular feed acceleration sensitive regions of the path are adjusted using a bi-directional scanning algorithm.After that,a linear programming method is used to adjust the feedrate profiles of linear feed acceleration sensitive regions and control the linear feed acceleration of both cutter tip and machine pivot within preset values.Further,a NURBS curve is used to fit the feedrates of sampling points.Finally,illustrative examples are carried out to validate the feasibility of the proposed feedrate scheduling method.The results show that the proposed method has the ability of effectively controlling the angular feed characters of cutter axis as well as the chord error and linear feed characters of cutter tip and machine pivot,and it has potential to be used in high accuracy and high quality five-axis machining.展开更多
The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via mach...The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters.展开更多
Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining...Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator,which can derive synchronized motion commands according to feedrate. Thus,the system can estimate the machining time. For universal assembly of five-axis virtual machine tool,it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team.展开更多
When milling part surfaces with a ball-end tool in 5-axis CNC machining,maintaining a constant cutting speed by keeping a fixed inclination angle between the tool axis and surface normal is crucial to ensure safe oper...When milling part surfaces with a ball-end tool in 5-axis CNC machining,maintaining a constant cutting speed by keeping a fixed inclination angle between the tool axis and surface normal is crucial to ensure safe operation and achieve high quality of the machined surface.Under this constraint,the variation of tool orientation is expected to be“smoothest possible”to reduce the angular speed of the rotary axes for the efficient and robust machining.To address this issue,the spatial tractrix which is the extension of classic tractrix is presented to establish the geometry model of the tool orientation kinematics in the part coordinate system.The proposed model describes the relations between the tilt angle and the variation of ball-end tool orientation.Two spatial tractrix-based methods,synchronizing tractrix-based method and equilibrating tractrix-based method,are developed to minimize the variation of tool orientation by controlling the variation of tilt angle.These methods are used to plan the tool orientation on a part surface modeled by a bicubic spline surface.The performance evaluation carried by intense simulations demonstrates the equilibrating tractrix-based method provide the best results in most cases compared with the existing differential geometry-based methods such as the tractrix-based method and parallel transport method.The synchronizing tractrix-based method works well in some special cases.展开更多
Cutting forces with respect to different cutter orientations are analyzed for five-axis NC machining of a ball-end cutter.A measure is then defined to quantify the effects of cutter orientation variation.According to ...Cutting forces with respect to different cutter orientations are analyzed for five-axis NC machining of a ball-end cutter.A measure is then defined to quantify the effects of cutter orientation variation.According to the measure,a novel model and algorithm are proposed to wholly optimize cutter orientations based on a cutter contact(CC) point mesh.The method has two advantages.One is that the cutter orientation smoothnesses along the feed direction and pick-feed direction are both wholly optimized.The other is that only the accessibility cones of mesh points are required to compute and the computation efficiency is improved.These advantages are shown by simulating the machining efficiency,the stability of feed velocities and the smoothness of cutting force.A computational example and a cutting experiment are finally given to illustrate the validity of the proposed method.展开更多
In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,i...In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other.In this paper,multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established,and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints.Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector,and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated.Machining experimental results show that the conditions of cutting force are satisfied,vibration during the process of machining is reduced,and the machining quality of the surface is improved.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51305244)Shandong Provincal Natural Science Foundation of China(Grant No.ZR2013EEL015)
文摘Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
基金Supported by National Nature Science Foundation of China(Grant No.51175461)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Program for Zhejiang Leading Team of S&T Innovation of China(Grant No.2009R50008)
文摘Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
文摘Material removal is one of the most used processes in manufacturing. Five-axis CNC machines are believed to be the best tools in sculptured surface machining. In this study, a generic and unified kinematic model was developed as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of a five-axis machine-tool. This versatile model is very useful applied to the design of five-axis machine tools.
文摘The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.
基金financed with the means of Basic Scientific Research Youth Program of Education Department of Liaoning Province,No.LJKQZ2021185Yingkou Enterprise and Doctor Innovation Program (QB-2021-05).
文摘The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product quality and efficiency,so this paper proposes a CNN convolutional neural network model based on the optimization of PSO algorithm to monitor the tool wear status.Firstly,the cutting vibration signals and spindle current signals during the milling process of the five-axis machining center are collected using sensor technology,and the features related to the tool wear status are extracted in the time domain,frequency domain and time-frequency domain to form a feature sample matrix;secondly,the tool wear values corresponding to the above features are measured using an electron microscope and classified into three types:slight wear,normal wear and sharp wear to construct a target Finally,the tool wear sample data set is constructed by using multi-source information fusion technology and input to PSO-CNN model to complete the prediction of tool wear status.The results show that the proposed method can effectively predict the tool wear state with an accuracy of 98.27%;and compared with BP model,CNN model and SVM model,the accuracy indexes are improved by 9.48%,3.44%and 1.72%respectively,which indicates that the PSO-CNN model proposed in this paper has obvious advantages in the field of tool wear state identification.
基金supported by a grant from the PLA Program for Clinical High-tech Projects for Military Hospitals (No. 2010GXJS053)
文摘China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for den-tistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.
基金supported by National Natural Science Foundation of China (Grant No. 50875012)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z124)+1 种基金National Science and Technology Major Project of China (Grant No. 2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education of China
文摘The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoothness and continuity of a whole tool path.When the surface curvature varies significantly,a local abrupt change of tool paths will happen.The abrupt change has a great influence on surface machining quality.In order to keep generated tool paths smooth and continuous,a five-axis tool positioning algorithm based on smooth tool paths is presented.Firstly,the inclination angle,the tilt angle and offset distance of the tool at a CC point are used as design variables,and the machining strip width is used as an objective function,an optimization model of a local tool positioning algorithm is thus established.Then,a vector equation of tool path is derived by using the above optimization model.By analyzing the equation,the main factors affecting the tool path quality are obtained.Finally,a new tool position optimization model is established,and the detailed process of tool position optimization is also given.An experiment is conducted to machine an aircraft turbine blade by using the proposed algorithm on a 5-axis blade grinding machine,and the machined blade surface is measured with a coordinate measuring machine(CMM).Experimental and measured results show that the proposed algorithm can ensure tool paths are smooth and continuous,improve the tool path quality,avoid the local abrupt change of tool paths,and enhance machining quality and machining efficiency of sculptured surfaces.
基金co-supported by the Natural Science Foundation of Beijing(No.3214043)the Project of State Key Lab of Tribology of Tsinghua University(No.SKLT2021D16)the National Natural Science Foundation of China(No.51975319)。
文摘In order to satisfy the machining requirements of aero-engine casing in modern aviation industry, this paper investigates three main issues during the design and development process of a five-axis machine tool with high accuracy, stiffness and efficiency, including whole structure design,key components design, and supporting stiffness design. First, an appropriate structure of five-axis machine tool is determined considering the processing characteristics of aero-engine casing. Then, a dual drive swing head and a compact motorized spindle are designed with enough drive capability and stiffness, and related structure, assembly method, cooling technology, and performance simulation are given in detail. Next, a design method of supporting stiffness of guide is proposed through the deformation prediction of the spindle end. Based on above work, a prototype of machine tool is developed, and some experiments are carried out, including performance tests of swing head and motorized spindle, and machining of a simulated workpiece of aero-engine casing. All experimental results show that the machine tool has satisfactory accuracy, stiffness and efficiency, which meets the machining requirements of aero-engine casing. The main work can be used as references for engineers and technicians, which are meaningful in practice.
基金supported by the National Natural Science Foundation of China(Grant No.51875357)the State Key Program of National Natural Science Foundation of China(Grant No.U21B2081)the National Defense Science and Technology Excellence Youth Foundation(Grant No.2020-JCJQ-ZQ-079)。
文摘Tracking interferometer based on bi-rotary milling head is a novel scheme to conduct volumetric accuracy measurement of a five-axis machine tool.The laser beam direction of the interferometer can be regulated to follow the retroreflector by moving the bi-rotary head.This is a low-cost implementation of multilateration measurement,and its measurement accuracy is mainly affected by the error motion of the rotary axes.This paper proposes an improved multilateration principle to identify the positionindependent geometric errors of rotary axis and laser beam,and minimize their impact on the measurement uncertainty.A closed-loop tracking interferometer system installed on the spindle is developed to perform the measurement with high tracking accuracy.The device can be installed on an ordinary five-axis machine tool without modifying the machine tool structure.The proposed scheme is conducive to improving the accuracy and practical application of the tracking interferometer based on birotary milling head.Experiments with the corresponding closed-loop tracking interferometer and uncertainty analysis are conducted to verify the performance of the proposed measurement scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 51075054)the National Basic Research Program of China ("973" Program) (Grant Nos. 2005CB726100 and 2011CB706800)the Fundamental Research Funds for the Central Universities (Grant No. DUT10ZD205)
文摘The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,geometric error prediction and tool path optimization for five-axis flank machining. In this paper,an envelope surface model considering cutter runout effect is first established,and geometric errors induced by runout effect are derived based on the relative motion analysis between the cutter and part in machining. In the model,the cutter runout is defined by four parameters,including inclination angle,location angle,offset value and the length of cutter axis. Then the runout parameters are integrated into the rotation surface of each cutting edge that is used to form the final cutter envelope surface for the five-axis machining process. Thus,the final resulting geometric errors of the machined surface induced by cutter runout can be obtained through computing the deviations from the nominal cutter swept surface. To reduce these errors,an iterative least square method is used to optimize the tool paths for five-axis flank machining. Finally,a validation example is given for a specific ruled surface. Results show the effectiveness and feasibility of the analytical model of geometric errors induced by cutter runout,and also show that the geometric errors can be reduced significantly using the proposed tool path planning method.
基金supported by the National Key Basic Research and Development Projects under Grant No.2011CB302400
文摘A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyzed.A segmentation method based on values of rotation angles and lengths of adjacent points is then used to subdivide these command points into accuracy regions and smoothness regions.Since tool center points generated by CAD/CAM system are usually lying in the space that is apart from the desired curve within a tolerance distance,and the corresponding tool orientation vector may change a lot while the trajectory length of the tool center point is quite small,directly machining with such points will lead to problems of coarse working shape and long machining time.A correction method for command points is implemented so that good processing effectiveness can be achieved.Also,the quintic spline is used for compressing discrete command points into a C2 continuous smooth curve.The machining experiment is finally conducted to demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Key Basic Research Project of China under Grant No.2011CB302400the National Natural Science Foundation of China under Grant Nos.50975274 and 50975495
文摘For the geometry characteristics of open free-form surfaces,it is hard to consider global interference during the planning of feasible domains.Therefore,the optimal kinematic orientation of tool axis will no longer be confined to the boundary of feasible domains.In this paper,according to the principle demanding that the tool should be fitted to a surface as close as possible and relevant processing parameters,a feasible domain of tool orientation for each cutter contact is planned in the local feed coordinates system.Then,these feasible domains of the tool orientation are transformed into the same coordinates system of the machine tool by the inverse kinematics transformation.The linear equations based feasible domain method and Rosen gradient projection algorithm are used to improve the optimization process in precision and efficiency of the algorithm.It constructs the variation of tool orientation optimization model and ensures the smoothness of tool orientation globally.Simulation and analysis of examples show that the proposed method has good kinematics performance and greatly improves the efficiency.
基金the National Natural Science Foundation of China(No.51675439)。
文摘Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an essential task to find the collision-free tool orientation when the tool holder is pushed deep into the channel of blisk to increase rigidity and reduce vibration.Since the radius of the holder varies with the height,the line-visibility is no longer applicable when constructing collision-free regions of tool orientation.In this paper,a method of constructing collisionfree regions without interference checking is proposed.The work of finding collision-free regions resorts to solving the local contact curves on the checking surfaces of blisk.And it further transforms into searching the locally tangent points(named critical points)between the holder and surface.Then a tracking-based algorithm is proposed to search the sample critical points on these local contact curves.And the corresponding critical vectors are also calculated synchronously.Besides,the safety allowance,discrete precision and acceptable deviation are introduced in the algorithm to ensure accuracy by controlling the angle between two adjacent critical vectors properly.After that,the searched critical vectors are mapped orderly to two-dimensional space and the collisionfree regions are constructed.This method is finally verified and compared with a referenced method.The results show that the proposed method can efficiently construct collision-free regions for holder under the given accuracy.
基金supported by the National Natural Science Foundation of China under Grant Nos.51075054 and 11290143the National Basic Research Program of China under Grant No.2011CB716800
文摘Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented with geometric and kinematical constraints.For a given dual parametric curve,the feedrates of sampling points are first scheduled sequent with confined feedrate of cutter tip and machine pivot,chord error,normal acceleration and angular feedrate.Then,the feedrate profiles of angular feed acceleration sensitive regions of the path are adjusted using a bi-directional scanning algorithm.After that,a linear programming method is used to adjust the feedrate profiles of linear feed acceleration sensitive regions and control the linear feed acceleration of both cutter tip and machine pivot within preset values.Further,a NURBS curve is used to fit the feedrates of sampling points.Finally,illustrative examples are carried out to validate the feasibility of the proposed feedrate scheduling method.The results show that the proposed method has the ability of effectively controlling the angular feed characters of cutter axis as well as the chord error and linear feed characters of cutter tip and machine pivot,and it has potential to be used in high accuracy and high quality five-axis machining.
基金The funding of the research project was provided by NED University of Engineering and Technology,Pakistan.
文摘The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters.
文摘Most researches about virtual machine tool are emphasized on simulations of machine motion and machining process for single machine. In this paper,a virtual simulation system for remote collaborative surface machining is developed. The motion command of machine tool is generated by an interpolator,which can derive synchronized motion commands according to feedrate. Thus,the system can estimate the machining time. For universal assembly of five-axis virtual machine tool,it is based on the D-H notation representation and machining constraints consideration. The remote collaborative virtual manufacturing system based on the CORBA technology is proposed in this paper. It demonstrated that the developed virtual machine tool can be used to verify and simulate the machining process for the collaboration of the surface design and manufacturing team.
基金supported by National Natural Science Foundation of China(No.51975231)。
文摘When milling part surfaces with a ball-end tool in 5-axis CNC machining,maintaining a constant cutting speed by keeping a fixed inclination angle between the tool axis and surface normal is crucial to ensure safe operation and achieve high quality of the machined surface.Under this constraint,the variation of tool orientation is expected to be“smoothest possible”to reduce the angular speed of the rotary axes for the efficient and robust machining.To address this issue,the spatial tractrix which is the extension of classic tractrix is presented to establish the geometry model of the tool orientation kinematics in the part coordinate system.The proposed model describes the relations between the tilt angle and the variation of ball-end tool orientation.Two spatial tractrix-based methods,synchronizing tractrix-based method and equilibrating tractrix-based method,are developed to minimize the variation of tool orientation by controlling the variation of tilt angle.These methods are used to plan the tool orientation on a part surface modeled by a bicubic spline surface.The performance evaluation carried by intense simulations demonstrates the equilibrating tractrix-based method provide the best results in most cases compared with the existing differential geometry-based methods such as the tractrix-based method and parallel transport method.The synchronizing tractrix-based method works well in some special cases.
基金supported by the National Basic Research Program of China ("973" Program)(Grant No.2005CB724103)the National Natural Science Foundation of China (Grant No.50805093) the Science & Technology Commission of Shanghai Municipality (Grant No.07JC14028)
文摘Cutting forces with respect to different cutter orientations are analyzed for five-axis NC machining of a ball-end cutter.A measure is then defined to quantify the effects of cutter orientation variation.According to the measure,a novel model and algorithm are proposed to wholly optimize cutter orientations based on a cutter contact(CC) point mesh.The method has two advantages.One is that the cutter orientation smoothnesses along the feed direction and pick-feed direction are both wholly optimized.The other is that only the accessibility cones of mesh points are required to compute and the computation efficiency is improved.These advantages are shown by simulating the machining efficiency,the stability of feed velocities and the smoothness of cutting force.A computational example and a cutting experiment are finally given to illustrate the validity of the proposed method.
基金supported by the National Natural Science Foundation of Chin-China Aerospace Science and Technology Corporation on Advance Manufacturing(No.U1537209)National Natural Science Foundation of China(No.51775278)Jiangsu Province Outstanding Youth Fund of China(No.BK20140036).
文摘In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other.In this paper,multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established,and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints.Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector,and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated.Machining experimental results show that the conditions of cutting force are satisfied,vibration during the process of machining is reduced,and the machining quality of the surface is improved.