Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligen...The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.展开更多
In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,i...In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other.In this paper,multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established,and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints.Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector,and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated.Machining experimental results show that the conditions of cutting force are satisfied,vibration during the process of machining is reduced,and the machining quality of the surface is improved.展开更多
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milli...The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process.展开更多
针对五轴石材切板机床的圆形锯片安装中心相对于机床控制点存在偏置以及锯片本身尺寸导致过切的问题,对切削点相对于控制点的空间位姿关系进行了分析,对加工图元为直线时的各种工况进行了详尽研究,提出了一种基于美国3S开放式系统(Servo...针对五轴石材切板机床的圆形锯片安装中心相对于机床控制点存在偏置以及锯片本身尺寸导致过切的问题,对切削点相对于控制点的空间位姿关系进行了分析,对加工图元为直线时的各种工况进行了详尽研究,提出了一种基于美国3S开放式系统(Servo Works S-140M)的偏置补偿算法,建立了刀位轨迹与数控轨迹之间的联系。通过系统仿真功能验证了该算法的正确性,并通过实际加工进行了测试。研究结果表明,所加工出的零件能满足加工工艺和精度要求,提高了加工效率和加工精度,降低了生产成本。展开更多
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
基金Project(11039)supported by Shahrood University of Technology,Iran
文摘The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.
基金supported by the National Natural Science Foundation of Chin-China Aerospace Science and Technology Corporation on Advance Manufacturing(No.U1537209)National Natural Science Foundation of China(No.51775278)Jiangsu Province Outstanding Youth Fund of China(No.BK20140036).
文摘In order to ensure machining stability,curvature continuity and smooth cutting force are very important so as to meet the constraints of both cutting force and kinematics of machine tools.For five-axis flank milling,it is difficult to meet both of the constraints because tool path points and tool axis vectors interact with each other.In this paper,multiple relationships between tool path points and tool axis vectors with cutting force and kinematics of machine tools are established,and the strategies of corner-looping milling and clothoidal spirals are combined so as to find feasible solutions under both of the constraints.Tool path parameters are iterated by considering the maximum cutting force and the feasible range of the tool axis vector,and eventually a curvature continuity five-axis flank milling tool path with smooth cutting force is generated.Machining experimental results show that the conditions of cutting force are satisfied,vibration during the process of machining is reduced,and the machining quality of the surface is improved.
基金supported by National Natural Science Foundation of China (Grant No. 51075054)National Basic Research Program of China (973 Program, Grant No. 2005CB724100)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-081)
文摘The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process.
文摘针对五轴石材切板机床的圆形锯片安装中心相对于机床控制点存在偏置以及锯片本身尺寸导致过切的问题,对切削点相对于控制点的空间位姿关系进行了分析,对加工图元为直线时的各种工况进行了详尽研究,提出了一种基于美国3S开放式系统(Servo Works S-140M)的偏置补偿算法,建立了刀位轨迹与数控轨迹之间的联系。通过系统仿真功能验证了该算法的正确性,并通过实际加工进行了测试。研究结果表明,所加工出的零件能满足加工工艺和精度要求,提高了加工效率和加工精度,降低了生产成本。