A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pe...A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solutio...The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.展开更多
Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic ...Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic relationship between various xenoliths can be well explained by the processes of delamination.展开更多
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our w...The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our way to come up with a working model of quintessence scalar fields, which permits relic generation of dark matter and dark energy. Not only referencing this bridge, we do it in such a way as to utilize the low entropy condition which the Brane world model of Randal and Sundrum creates, and to show how it is in common with what Caroll and Chen wrote up in 2005., i.e. when the universe was about 1000 times smaller and 100,000 times younger than today.展开更多
In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum sta...In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.展开更多
A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,de...A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,defined globally on a manifold M,and the gravitational field is attributed to the torsion.The form of Lagrangian density is quadratic in torsion tensor.We then give an exact five-dimensional spherically symmetric solution(Schwarzschild(4+1)-dimensions).Finally,we calculate energy and spatial momentum using gravitational energy-momentum tensor and superpotential 2-form.展开更多
This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network ev...This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.展开更多
Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-ca...Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-cal simulation method is required for the optimal design.The non-adiabatic flamelet approach can predict the combustion emissions and is useful for reducing simulation costs.However,as the number of control variables increases,the database requires larger memory and cannot be dealt with by general computers.In this study,an artificial neural network(ANN)model based on a five-dimensional flamelet database,which includes the effects of heat loss and vapor concentration by sprayed water evaporation,is developed.Furthermore,large eddy sim-ulations(LESs)for turbulent combustion fields with and without water spray are conducted employing flamelet generated manifold(FGM)approach with this ANN model,and the validity is investigated.For comparison,a lab-scale burner equipped with a water spray nozzle is manufactured,and combustion experiments with and without water spray are conducted.The results show that CO,NO,temperature,and reaction rate of progress variable predicted by the present ANN model are in good agreement with those of a five-dimensional flamelet database.In the condition without water spray,the flame behavior predicted by the LES employing the FGM/ANN ap-proach is in good agreement with that employing the conventional FGM approach,while indicating much lower memory,although there appeared some quantitative discrepancies in the temperature against the experiment probably partially because of the insufficiency of the FGM approach for the present complex flame structure.In the condition with water spray,the LES employing the FGM/ANN approach is able to capture the effect of the water spray on the flame behavior in the experiment,such that the water spray decreases the temperature,which causes the decrease in NO but increase in CO.展开更多
The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Ham...The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.展开更多
文摘A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
文摘The general approach for solving the nonlinear equations is linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For the strongly nonlinear problems, the solution obtained in the iterative process is always difficult, even divergent due to the numerical instability. It can not fulfill the engineering requirements. Newton's method and its variants can not settle this problem. As a result, the application of numerical simulation for the strongly nonlinear problems is limited. An auto-adjustable damping method has been presented in this paper. This is a further improvement of Newton's method with damping factor. A set of vector of damping factor is introduced. This set of vector can be adjusted continuously during the iterative process in accordance with the judgement and adjustment. An effective convergence coefficient and quichening coefficient are employed to relax the restricted requirements for the initial values and to shorten the iterative process. Then, the numerical stability will be ensured for the solution of complicated strongly nonlinear equations. Using this method, some complicated strongly nonlinear heat transfer problems in airplanes and aeroengines have been numerically simulated successfully. It can be used for the numerical simulation of strongly nonlinear problems in engineering such as nonlinear hydrodynamics and aerodynamics, heat transfer and structural dynamic response etc.
文摘Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Hannuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic relationship between various xenoliths can be well explained by the processes of delamination.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
文摘The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our way to come up with a working model of quintessence scalar fields, which permits relic generation of dark matter and dark energy. Not only referencing this bridge, we do it in such a way as to utilize the low entropy condition which the Brane world model of Randal and Sundrum creates, and to show how it is in common with what Caroll and Chen wrote up in 2005., i.e. when the universe was about 1000 times smaller and 100,000 times younger than today.
文摘In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.
文摘A theory of(N+1)-dimensional gravity is developed on the basis of the teleparallel equivalent of general relativity(TEGR).The fundamental gravitational field variables are the(N+1)-dimensional vector fields,defined globally on a manifold M,and the gravitational field is attributed to the torsion.The form of Lagrangian density is quadratic in torsion tensor.We then give an exact five-dimensional spherically symmetric solution(Schwarzschild(4+1)-dimensions).Finally,we calculate energy and spatial momentum using gravitational energy-momentum tensor and superpotential 2-form.
基金"973"National Key Basic Research & Development Program "Research of the Basic Scientific Issues in the Traffic Congestion Bottlenecks of Big Cities"( No. 2006CB705500)Beijing Science & Technology Program "Research of the New Data Collection Technologies for Transportation Management " (No.D101100049710004)Beijing Science & Technology Program "Research of the Demonstration Platform for the In-tegrated Dynamic Operation Analysis of City Road Networks"(No. D07050600440704)
文摘This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.
基金The temperature measurements and PIA were supported by Prof.M.Nishioka of University of Tsukuba and Prof.K.Nishino of Yokohama National University,respectively.This work was partially supported by MEXT as"Program for Promoting Researches on the Supercomputer Fu-gaku"(Digital Twins of Real World’s Clean Energy Systems with Inte-grated Utilization of Super-simulation and AI).
文摘Owing to the increasing worldwide demand for natural gas,the development of a large submerged combustion vaporizer is required.Its burner is equipped with a water spray nozzle to reduce nitrogen oxides,and a practi-cal simulation method is required for the optimal design.The non-adiabatic flamelet approach can predict the combustion emissions and is useful for reducing simulation costs.However,as the number of control variables increases,the database requires larger memory and cannot be dealt with by general computers.In this study,an artificial neural network(ANN)model based on a five-dimensional flamelet database,which includes the effects of heat loss and vapor concentration by sprayed water evaporation,is developed.Furthermore,large eddy sim-ulations(LESs)for turbulent combustion fields with and without water spray are conducted employing flamelet generated manifold(FGM)approach with this ANN model,and the validity is investigated.For comparison,a lab-scale burner equipped with a water spray nozzle is manufactured,and combustion experiments with and without water spray are conducted.The results show that CO,NO,temperature,and reaction rate of progress variable predicted by the present ANN model are in good agreement with those of a five-dimensional flamelet database.In the condition without water spray,the flame behavior predicted by the LES employing the FGM/ANN ap-proach is in good agreement with that employing the conventional FGM approach,while indicating much lower memory,although there appeared some quantitative discrepancies in the temperature against the experiment probably partially because of the insufficiency of the FGM approach for the present complex flame structure.In the condition with water spray,the LES employing the FGM/ANN approach is able to capture the effect of the water spray on the flame behavior in the experiment,such that the water spray decreases the temperature,which causes the decrease in NO but increase in CO.
基金supported in part by the Major State Basic Research Developing Program (Grant No 2007CB815000)the National Natural Science Foundation of China (Grant Nos 11005004, 10775004 and 10975008)+1 种基金the Southwest University Initial Research Foundation Grant to Doctor (Grant No.SWU110039)MZOS (Grant No 1191005-1010)
文摘The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.