A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial ...A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.展开更多
The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to...The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to obtain bin stacked NCFs,clear body waves are retrieved at different period bands.Teleseismic direct P waves for distance 15-40 degrees are observed between short period 3-10 s while core reflected PcP/ScS waves are more obvious for longer period 30-60 s.The signal-to-noise-ratio(SNR)of the short period P waves reaches its highest point with bin widths around 20 km while SNRs of PcP and ScS increase slowly with bin width.All those body waves demonstrate clear directivity with strong signals traveling from the east.The time-lapse SNR variations for the PcP and ScS show correlation with the occurrence of major earthquakes,while the P-wave SNR demonstrates seasonal variations with additional contribution from major earthquakes.The present results suggest teleseismic body waves can be retrieved through bin stacking,though further processing is still necessary to obtain finer waveforms such as P wave triplications.展开更多
The silicon-based arrayed waveguide grating(AWG)is widely used due to its compact footprint and its compatibility with the mature CMOS process.However,except for AWGs with ridged waveguides of a few micrometers of cro...The silicon-based arrayed waveguide grating(AWG)is widely used due to its compact footprint and its compatibility with the mature CMOS process.However,except for AWGs with ridged waveguides of a few micrometers of cross section,any small process error will cause a large phase deviation in other AWGs,resulting in an increasing cross talk.In this paper,an ultralow cross talk AWG via a tunable microring resonator(MRR)filter is demonstrated on the SOI platform.The measured insertion loss and minimum adjacent cross talk of the designed AWG are approximately 3.2 and-45.1 d B,respectively.Compared with conventional AWG,its cross talk is greatly reduced.展开更多
In this paper, a multi-band metasurface(MS) antenna array with low radar cross section(RCS) performance is proposed and measured. Firstly, a 44 antenna array is composed of four 22 Jerusalem cross structure antenn...In this paper, a multi-band metasurface(MS) antenna array with low radar cross section(RCS) performance is proposed and measured. Firstly, a 44 antenna array is composed of four 22 Jerusalem cross structure antenna arrays working at different frequency bands, which is aimed at enhancing the bandwidth effectively. Then, each antenna can be seen as a unit of MS in spite of adding the feeding structure. Based on phase cancellation principle, the MS is arranged into a chessboard configuration in order to realize wideband RCS reduction. Thus, excellent radiation and scattering characteristics are obtained simultaneously. Simulated and measured results indicate that this work provides a novel method to achieve bandwidth expansion as well as wideband RCS reduction of the antenna array.展开更多
It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For t...It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For the coherent com- bination, Zc is larger than that for the incoherent combination. However, in non-Kolmogorov turbulence, the cross point disappears, and the Gaussian array beams will have the same directionality in terms of the angular spread. Furthermore, a short propagation distance is needed to reach the same directionality when the generalized exponent is equal to 3.108. In particular, it is shown that the condition obtained in previous studies is not necessary for laser beams to have the same directionality in turbulence, which is explained physically. On the other hand, the relative average intensity distributions at the position where the Gaussian array beams have the same mean-squared beam width are also examined.展开更多
Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used ...Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used for automatic accurate onset phase picking based on the proporty of dense seismic array observations. In our method, the Akaike's information criterion (AIC) for the single channel observation and the least-squares cross-correlation for the multi-channel observation are combined together. The tests by the seismic array observation data after triggering with the short-term average/long-term average (STA/LTA) technique show that the phase picking error is less than 0.3 s for local events by using the single channel AIC algorithm. In terms of multi-channel least-squares cross-correlation technique, the clear teleseismic P onset can be detected reliably. Even for the teleseismic records with high noise level, our algorithm is also able to effectually avoid manual misdetections.展开更多
We assess the performance of waveform cross correlation as applied to automatic and interactive processing of the aftershock sequence of the April 11, 2012 Sumatera Ms(IDC) = 8.2 earthquake. The XSEL (cross correla...We assess the performance of waveform cross correlation as applied to automatic and interactive processing of the aftershock sequence of the April 11, 2012 Sumatera Ms(IDC) = 8.2 earthquake. The XSEL (cross correlation standard event list) is compared to the REB (Reviewed Event Bulletin) issued by the IDC (International Data Centre). The latter includes 1,181 aftershocks between April 11 and May 25. To automatically recover the sequence, sixteen aftershocks were selected from the IDC SEL3 (Standard Event List) available on April 13 and used as master events. Waveform templates from only seven IMS (International Monitoring System) array stations with the largest SNR (signal-to-noise ratio) for the main shock were used to calculate cross correlation coefficients. Approximately 620,000 arrivals were detected and then used to build events according to the IDC definition. After conflict resolution between event hypotheses with similar arrivals found by more than one master, all survived hypotheses populated the XSEL. The total number of distinct hypotheses was 4,924, with 2,763 hypotheses not matched by the REB, i.e. potentially new REB events. To evaluate the quality of the XSEL, we randomly selected a representative portion (-15%) from 2,763 hypotheses and reviewed them interactively according to standard IDC rules and guidelines. There were 119 new REB events built and 145 XSEL hypotheses rejected. Several frequency and probability density distributions have been constructed for all detections, the associated detections, the XSEL detections, the detections in the new REB, and rejected events.展开更多
The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the...The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the phase component, creates a high correlation value, but the speed of sound varies immensely. The method involves a Fast Fourier Transform (FFT) of the collected data, which is used to find the phase of the sound wave, and the slope of the position versus time graph, which is used to calculate the speed of sound. This high correlation value shows that the data are correct, but the numerical method for analyzing the data is incorrect.展开更多
In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spa...In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spatio-temporal information.However, the non-differential spike activity makes SNNs more difficult to train in supervised training. Most existing methods focusing on introducing an approximated derivative to replace it, while they are often based on static surrogate functions. In this paper, we propose a progressive surrogate gradient learning for backpropagation of SNNs, which is able to approximate the step function gradually and to reduce information loss. Furthermore, memristor cross arrays are used for speeding up calculation and reducing system energy consumption for their hardware advantage. The proposed algorithm is evaluated on both static and neuromorphic datasets using fully connected and convolutional network architecture, and the experimental results indicate that our approach has a high performance compared with previous research.展开更多
The Delta4 3D dose verification device was commissioned in the current work for pre-treatment quality assurance (QA) of Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) plans. The cr...The Delta4 3D dose verification device was commissioned in the current work for pre-treatment quality assurance (QA) of Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) plans. The cross calibration and relative array calibration were performed to enable absolute dose comparison. The linearity of response with dose and temperature sensitivity tests were also conducted to investigate dosimetric properties of the Delta4 device. The need to modify the original CT image of the Delta4 phantom for accurate dose calculation and comparison is addressed in this work, applying a CT extension algorithm. A number of test plans varying from simple 4—field conformal to IMRT and VMAT plans were measured to evaluate the accuracy of this device. It was found that the Delta4 device measured dose accurately to within ±1%. In order to maintain this level of accuracy the machine output fluctuations need to be corrected prior to each measurement and the relative array calibration needs to be performed every six months.展开更多
This paper studies the adaptive beamforming algorithm based on the frequency diverse array(FDA)array where the interference is located at the same angle(but different range)with the target.We take the cross subarray-b...This paper studies the adaptive beamforming algorithm based on the frequency diverse array(FDA)array where the interference is located at the same angle(but different range)with the target.We take the cross subarray-based FDA with sinusoidal frequency offset(CSB sin-FDA)as the receiving array instead of the basic FDA.The sampling covariance matrix under insufficient snapshot can be corrected by the automatic diagonal loading method.On the basis of decomposing the mismatched steering vector error into a vertical component and a parallel one,this paper searches the vertical component of the error by the quadratic constraint method.The numerical simulation verifies that the beamformer based on the CSB sin-FDA can effectively hold the mainlobe at the target position when the snapshot is insufficient or the steering vector is mismatched.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
Crossed grating stuck to metal surface was used as a strain sensor in the present work, and stress as well as strain were then investigated by accurately determining the change in the position of diffraction spot befo...Crossed grating stuck to metal surface was used as a strain sensor in the present work, and stress as well as strain were then investigated by accurately determining the change in the position of diffraction spot before and after deformed. A hardware testing system for linear CCD array, data gathering and processing was therefore developed for this purpose. Experimental results showed that the system has a good accuracy and can be used to measure stress and strain of metal surface in a real-time and quantitative manner.展开更多
This paper starts with the discussion of the principle of Reduced-Rank (RR) Space-Time Adaptive Processing (STAP). It is followed by a dedication of the upper bound performance of all eigen-based RR methods provided b...This paper starts with the discussion of the principle of Reduced-Rank (RR) Space-Time Adaptive Processing (STAP). It is followed by a dedication of the upper bound performance of all eigen-based RR methods provided by Cross Spectral Method (CSM) under the condition of a given processor rank and an identical secondary sample size. A performance comparison between two RR STAP processors with prefixed structure and CSM is performed by the means of simulations. It is shown that the performance of time pre-filtering followed by jointly localized STAP structure (i.e. 3DT-SAP) is very close to the upper bound and thereby it is an effective RR approach.展开更多
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus...To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.展开更多
The three-dimensional localization problem for noncircular sources in near-field with a centro-symmetric cross array is rarely studied.In this paper,we propose an algorithm with improved estimation performance.We deco...The three-dimensional localization problem for noncircular sources in near-field with a centro-symmetric cross array is rarely studied.In this paper,we propose an algorithm with improved estimation performance.We decompose the multiple parameters of the steering vector in a specific order so that it can be converted into the products of several matrices,and each of the matrices includes only one parameter.On this basis,each parameter to be resolved can be estimated by performing a one-dimensional spatial spectral search.Although the computational complexity of the proposed algorithm is several times that of our previous algorithm,the estimation performance,including its error and resolution,with respect to the direction of arrival,is improved,and the range estimation performance can be maintained.The superiority of the proposed algorithm is verified by simulation results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671464,61701523,and 61471389)
文摘A novel approach devoted to achieving ultra-wideband radar cross section reduction(RCSR) of a waveguide slot antenna array(WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors(AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultrawideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-tofabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.
基金sponsored by the National Key R&D Program of China(No.2018YFC1503200)National Science Foundation of China(No.42004046)。
文摘The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to obtain bin stacked NCFs,clear body waves are retrieved at different period bands.Teleseismic direct P waves for distance 15-40 degrees are observed between short period 3-10 s while core reflected PcP/ScS waves are more obvious for longer period 30-60 s.The signal-to-noise-ratio(SNR)of the short period P waves reaches its highest point with bin widths around 20 km while SNRs of PcP and ScS increase slowly with bin width.All those body waves demonstrate clear directivity with strong signals traveling from the east.The time-lapse SNR variations for the PcP and ScS show correlation with the occurrence of major earthquakes,while the P-wave SNR demonstrates seasonal variations with additional contribution from major earthquakes.The present results suggest teleseismic body waves can be retrieved through bin stacking,though further processing is still necessary to obtain finer waveforms such as P wave triplications.
基金supported by the National Key Research and Development Program of China(No.2018YFB2200500)the Yunnan Provincial Foundation Program(No.202201AT070202)the National Natural Science Foundation of China(No.62065010)。
文摘The silicon-based arrayed waveguide grating(AWG)is widely used due to its compact footprint and its compatibility with the mature CMOS process.However,except for AWGs with ridged waveguides of a few micrometers of cross section,any small process error will cause a large phase deviation in other AWGs,resulting in an increasing cross talk.In this paper,an ultralow cross talk AWG via a tunable microring resonator(MRR)filter is demonstrated on the SOI platform.The measured insertion loss and minimum adjacent cross talk of the designed AWG are approximately 3.2 and-45.1 d B,respectively.Compared with conventional AWG,its cross talk is greatly reduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471389,61701523,and 61671464)
文摘In this paper, a multi-band metasurface(MS) antenna array with low radar cross section(RCS) performance is proposed and measured. Firstly, a 44 antenna array is composed of four 22 Jerusalem cross structure antenna arrays working at different frequency bands, which is aimed at enhancing the bandwidth effectively. Then, each antenna can be seen as a unit of MS in spite of adding the feeding structure. Based on phase cancellation principle, the MS is arranged into a chessboard configuration in order to realize wideband RCS reduction. Thus, excellent radiation and scattering characteristics are obtained simultaneously. Simulated and measured results indicate that this work provides a novel method to achieve bandwidth expansion as well as wideband RCS reduction of the antenna array.
基金supported by the National Natural Science Foundation of China(Grant No.61178070)the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)
文摘It is found that in free space, the curves of the mean-squared beam width may each have a cross point at a certain propagation distance Zc. For Gaussian array beams, the analytical expressions of zc are derived. For the coherent com- bination, Zc is larger than that for the incoherent combination. However, in non-Kolmogorov turbulence, the cross point disappears, and the Gaussian array beams will have the same directionality in terms of the angular spread. Furthermore, a short propagation distance is needed to reach the same directionality when the generalized exponent is equal to 3.108. In particular, it is shown that the condition obtained in previous studies is not necessary for laser beams to have the same directionality in turbulence, which is explained physically. On the other hand, the relative average intensity distributions at the position where the Gaussian array beams have the same mean-squared beam width are also examined.
基金National Natural Science Foundation of China (Grant No. 40234043).
文摘Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used for automatic accurate onset phase picking based on the proporty of dense seismic array observations. In our method, the Akaike's information criterion (AIC) for the single channel observation and the least-squares cross-correlation for the multi-channel observation are combined together. The tests by the seismic array observation data after triggering with the short-term average/long-term average (STA/LTA) technique show that the phase picking error is less than 0.3 s for local events by using the single channel AIC algorithm. In terms of multi-channel least-squares cross-correlation technique, the clear teleseismic P onset can be detected reliably. Even for the teleseismic records with high noise level, our algorithm is also able to effectually avoid manual misdetections.
文摘We assess the performance of waveform cross correlation as applied to automatic and interactive processing of the aftershock sequence of the April 11, 2012 Sumatera Ms(IDC) = 8.2 earthquake. The XSEL (cross correlation standard event list) is compared to the REB (Reviewed Event Bulletin) issued by the IDC (International Data Centre). The latter includes 1,181 aftershocks between April 11 and May 25. To automatically recover the sequence, sixteen aftershocks were selected from the IDC SEL3 (Standard Event List) available on April 13 and used as master events. Waveform templates from only seven IMS (International Monitoring System) array stations with the largest SNR (signal-to-noise ratio) for the main shock were used to calculate cross correlation coefficients. Approximately 620,000 arrivals were detected and then used to build events according to the IDC definition. After conflict resolution between event hypotheses with similar arrivals found by more than one master, all survived hypotheses populated the XSEL. The total number of distinct hypotheses was 4,924, with 2,763 hypotheses not matched by the REB, i.e. potentially new REB events. To evaluate the quality of the XSEL, we randomly selected a representative portion (-15%) from 2,763 hypotheses and reviewed them interactively according to standard IDC rules and guidelines. There were 119 new REB events built and 145 XSEL hypotheses rejected. Several frequency and probability density distributions have been constructed for all detections, the associated detections, the XSEL detections, the detections in the new REB, and rejected events.
文摘The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the phase component, creates a high correlation value, but the speed of sound varies immensely. The method involves a Fast Fourier Transform (FFT) of the collected data, which is used to find the phase of the sound wave, and the slope of the position versus time graph, which is used to calculate the speed of sound. This high correlation value shows that the data are correct, but the numerical method for analyzing the data is incorrect.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0565)the Fundamental Research Funds for the Central Universities(Grant No.SWU021002)the Graduate Research Innovation Project of Chongqing(Grant No.CYS22242)。
文摘In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spatio-temporal information.However, the non-differential spike activity makes SNNs more difficult to train in supervised training. Most existing methods focusing on introducing an approximated derivative to replace it, while they are often based on static surrogate functions. In this paper, we propose a progressive surrogate gradient learning for backpropagation of SNNs, which is able to approximate the step function gradually and to reduce information loss. Furthermore, memristor cross arrays are used for speeding up calculation and reducing system energy consumption for their hardware advantage. The proposed algorithm is evaluated on both static and neuromorphic datasets using fully connected and convolutional network architecture, and the experimental results indicate that our approach has a high performance compared with previous research.
文摘The Delta4 3D dose verification device was commissioned in the current work for pre-treatment quality assurance (QA) of Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) plans. The cross calibration and relative array calibration were performed to enable absolute dose comparison. The linearity of response with dose and temperature sensitivity tests were also conducted to investigate dosimetric properties of the Delta4 device. The need to modify the original CT image of the Delta4 phantom for accurate dose calculation and comparison is addressed in this work, applying a CT extension algorithm. A number of test plans varying from simple 4—field conformal to IMRT and VMAT plans were measured to evaluate the accuracy of this device. It was found that the Delta4 device measured dose accurately to within ±1%. In order to maintain this level of accuracy the machine output fluctuations need to be corrected prior to each measurement and the relative array calibration needs to be performed every six months.
基金supported by the National Natural Science Foundation of China(61503408)
文摘This paper studies the adaptive beamforming algorithm based on the frequency diverse array(FDA)array where the interference is located at the same angle(but different range)with the target.We take the cross subarray-based FDA with sinusoidal frequency offset(CSB sin-FDA)as the receiving array instead of the basic FDA.The sampling covariance matrix under insufficient snapshot can be corrected by the automatic diagonal loading method.On the basis of decomposing the mismatched steering vector error into a vertical component and a parallel one,this paper searches the vertical component of the error by the quadratic constraint method.The numerical simulation verifies that the beamformer based on the CSB sin-FDA can effectively hold the mainlobe at the target position when the snapshot is insufficient or the steering vector is mismatched.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
文摘Crossed grating stuck to metal surface was used as a strain sensor in the present work, and stress as well as strain were then investigated by accurately determining the change in the position of diffraction spot before and after deformed. A hardware testing system for linear CCD array, data gathering and processing was therefore developed for this purpose. Experimental results showed that the system has a good accuracy and can be used to measure stress and strain of metal surface in a real-time and quantitative manner.
文摘This paper starts with the discussion of the principle of Reduced-Rank (RR) Space-Time Adaptive Processing (STAP). It is followed by a dedication of the upper bound performance of all eigen-based RR methods provided by Cross Spectral Method (CSM) under the condition of a given processor rank and an identical secondary sample size. A performance comparison between two RR STAP processors with prefixed structure and CSM is performed by the means of simulations. It is shown that the performance of time pre-filtering followed by jointly localized STAP structure (i.e. 3DT-SAP) is very close to the upper bound and thereby it is an effective RR approach.
基金the National Natural Science Foundation of China(No.51474100)the Youth Science Fund of Heilongjiang Province in China(No.QC2010023)the Youth Outstanding Ability Program in Heilongjiang University of Science and Technology
文摘To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient.
基金supported by the National Natural Science Foundation of China(Nos.61971217,61971218,61631020,and 61601167)。
文摘The three-dimensional localization problem for noncircular sources in near-field with a centro-symmetric cross array is rarely studied.In this paper,we propose an algorithm with improved estimation performance.We decompose the multiple parameters of the steering vector in a specific order so that it can be converted into the products of several matrices,and each of the matrices includes only one parameter.On this basis,each parameter to be resolved can be estimated by performing a one-dimensional spatial spectral search.Although the computational complexity of the proposed algorithm is several times that of our previous algorithm,the estimation performance,including its error and resolution,with respect to the direction of arrival,is improved,and the range estimation performance can be maintained.The superiority of the proposed algorithm is verified by simulation results.