A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st...A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality.展开更多
The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external...The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external RTD curve to reveal macroscopic fluid flow behaviour.Based on the external RTD to effectively assess dead volume fractions and other fluid characteristics under conditions of internal non-uniform flow,an internal RTD was introduced.In a smooth pipe under laminar flow conditions,the dead region occupies 25%of the total volume,which is defined as the space between the pipe wall and a radius of 0.866 R0(where R0 is the radius of pipe).Under turbulent flow conditions,the dead region only occupies 0.38%of the reactor’s internal volume,spanning from the pipe wall to a radius of 0.00189 R0.The results obtained using the external RTD method are consistent with the theoretical analysis.Experimental trials involving water were conducted to examine the flow of molten steel within a five-strand tundish.Subsequently,an analysis approach employing internal RTD was employed to evaluate fluid mixing within a multi-flow continuous casting tundish.Using the internal RTD method,the analysis revealed that the whole dead zone volume fraction of the intermediate package decreased from 26.9%to 18.9%after the addition of the flow control device.The dead volume fraction can be accurately depicted by utilising the internal mean RTD function.The association between the internal RTD function and the external average RTD can be effectively employed to scrutinise the response curve of the tracer within a system exhibiting uneven flow distribution.展开更多
The research on tundish metallurgy has focused mainly on taking countermeasures to avoid and remove inclusions and the recent developments on tundish metallurgy were surveyed.The authers'advices for future develop...The research on tundish metallurgy has focused mainly on taking countermeasures to avoid and remove inclusions and the recent developments on tundish metallurgy were surveyed.The authers'advices for future development of tundish metallurgy were given in summary section.展开更多
基金the National Key R&D Program(No.2023YFB3709900)the National Natural Science Foundation of China(Nos.U22A20171 and 52104343)the High Steel Central(HSC)at North China University of Science and Technology and Yanshan Univ ersity,China。
文摘A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality.
基金supported by grants from the National Natural Science Foundation of China(No.51774004)Anhui Province Outstanding Research and Innovation Team in Higher Education Institutions(No.2022AH010024).
文摘The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external RTD curve to reveal macroscopic fluid flow behaviour.Based on the external RTD to effectively assess dead volume fractions and other fluid characteristics under conditions of internal non-uniform flow,an internal RTD was introduced.In a smooth pipe under laminar flow conditions,the dead region occupies 25%of the total volume,which is defined as the space between the pipe wall and a radius of 0.866 R0(where R0 is the radius of pipe).Under turbulent flow conditions,the dead region only occupies 0.38%of the reactor’s internal volume,spanning from the pipe wall to a radius of 0.00189 R0.The results obtained using the external RTD method are consistent with the theoretical analysis.Experimental trials involving water were conducted to examine the flow of molten steel within a five-strand tundish.Subsequently,an analysis approach employing internal RTD was employed to evaluate fluid mixing within a multi-flow continuous casting tundish.Using the internal RTD method,the analysis revealed that the whole dead zone volume fraction of the intermediate package decreased from 26.9%to 18.9%after the addition of the flow control device.The dead volume fraction can be accurately depicted by utilising the internal mean RTD function.The association between the internal RTD function and the external average RTD can be effectively employed to scrutinise the response curve of the tracer within a system exhibiting uneven flow distribution.
文摘The research on tundish metallurgy has focused mainly on taking countermeasures to avoid and remove inclusions and the recent developments on tundish metallurgy were surveyed.The authers'advices for future development of tundish metallurgy were given in summary section.